146 resultados para Gd3 chelates
Resumo:
The relaxivity displayed by Gd3+ chelates immobilized onto gold nanoparticles is the result of complex interplay between nanoparticle size, water exchange rate and chelate structure. In this work we study the effect of the length of -thioalkyl linkers, anchoring fast water exchanging Gd3+ chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd3+ chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(-amino)propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM-1s-1 (30 MHz, 25 C) were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles is determined mainly by size. Small nanoparticles (HD= 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD= 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggests that functionalized gold nanoparticles hold great potential for further investigation as MRI Contrast Agents. This study contributes to understand the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd3+ complexes. It is a relevant contribution towards design rules for nanostructures functionalized with Gd3+ chelates as Contrast Agents for MRI and multimodal imaging.
Resumo:
The aim of this work was to devise a one-step purification procedure for monoclonal antibodies (MAbs) of IgG class by immobilized metal affinity chromatography (IMAC). Therefore, several stationary phases were prepared containing immobilized metal chelates in order to study the chromatographic behaviour of MAbs against wild-type amidase from Pseudomonas aeruginosa. Such MAbs adsorbed to Cu(II), Ni(II), Zn(II) and Co(II)-IDA agarose columns. The increase in ligand concentration and the use of longer spacer arms and higher pH values resulted in higher adsorption of MAbs into immobilized metal chelates. The dynamic binding capacity and the maximum binding capacity were 1.33 +/- 0.015 and 3.214 +/- 0.021 mg IgG/mL of sedimented commercial matrix, respectively. A K(D) of 4.53 x 10(-7) M was obtained from batch isotherm measurements. The combination of tailor-made stationary phases of IMAC and the correct selection of adsorption conditions permitted a one-step purification procedure to be devised for MAbs of IgG class. Culture supernatants containing MAbs were purified by IMAC on commercial-Zn(II) and EPI-30-IDA-Zn(II) Sepharose 6B columns and by affinity chromatography on Protein A-Sepharose CL-4B. This MAb preparation revealed on SDS-PAGE two protein bands with M(r) of 50 and 22 kDa corresponding to the heavy and light chains, respectively. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Inorganic Chemistry 50(21):10600-7
Resumo:
PhD Thesis in Sciences Specialization in Chemistry
Resumo:
Three PEGylated derivatives of 1,4,7,10-tetraazacyclododecane-1-((6-amino)hexanoic)-4,7,10-triacetic acid) (DOTA-AHA) with different molecular weights were prepared and characterized. Their Gd(III) chelates were studied in aqueous solution using variable-temperature 1H nuclear magnetic relaxation dispersion (NMRD) and 17ONMR spectroscopy in view of the determination of their relaxivity and the parameters that govern it. The relaxivity varied from 5.1 to 6.5 mM-1.s-1 (37 C and 60 MHz) with the increasing molecular weight of the PEG chain, being slightly higher than that of the parent chelate Gd(DOTA-AHA), due to a small contribution of a slow global rotation of the complexes. A variable temperature 1H NMR study of several Ln(III) chelates of DOTA-A(PEG750)HA allowed the determination of the isomeric M/m ratio (M = square antiprismatic isomer and m = twisted square antiprismatic isomer, the latter presenting a much faster water exchange) which for the Gd(III) chelate was estimated in circa 1:0.2, very close to that of [Gd(DOTA)]-. This explains why the PEGylated Gd(III) chelate has a water rate exchange similar to that of [Gd(DOTA)]-. The predominance of the M isomer is a consequence of the bulky PEG moiety which does not favor the stabilization of the m isomer in sterically crowded systems at the substituent site, contrary to what happens with less packed asymmetrical DOTA-type chelates with substitution in one of the four acetate C() atoms.
Resumo:
Water-dispersible gold nanoparticles functionalized with paramagnetic gadolinium have been fully characterized, and the NMRD profiles show very high relaxivities up to 1.5 T. Characterization using TEM images and dynamic light scattering indicate a particle size distribution from 2 to 15 nm. The gold cores of the nanoparticles do not contribute significantly to the overall magnetic moment.
Resumo:
Abstract Background: Hypoxia-mediated HIF-1a stabilization and NF-kB activation play a key role in carcinogenesis by fostering cancer cell survival, angiogenesis and tumor invasion. Gangliosides are integral components of biological membranes with an increasingly recognized role as signaling intermediates. In particular, ganglioside GD3 has been characterized as a proapoptotic lipid effector by promoting cell death signaling and suppression of survival pathways. Thus, our aim was to analyze the role of GD3 in hypoxia susceptibility of hepatocarcinoma cells and in vivo tumor growth. Methodology/Principal Findings: We generated and characterized a human hepatocarcinoma cell line stably expressing GD3 synthase (Hep3B-GD3), which catalyzes the synthesis of GD3 from GM3. Despite increased GD3 levels (2-3 fold), no significant changes in cell morphology or growth were observed in Hep3B-GD3 cells compared to wild type Hep3B cells under normoxia. However, exposure of Hep3B-GD3 cells to hypoxia (2% O2) enhanced reactive oxygen species (ROS) generation, resulting in decreased cell survival, with similar findings observed in Hep3B cells exposed to increasing doses of exogenous GD3. In addition, hypoxia-induced c-Src phosphorylation at tyrosine residues, NF-kB activation and subsequent expression of Mn-SOD were observed in Hep3B cells but not in Hep3B-GD3 cells. Moreover, MnTBAP, an antioxidant with predominant SOD mimetic activity, reduced ROS generation, protecting Hep3B-GD3 cells from hypoxia-induced death. Finally, lower tumor growth, higher cell death and reduced Mn-SOD expression were observed in Hep3B-GD3 compared to Hep3B tumor xenografts. Conclusion: These findings underscore a role for GD3 in hypoxia susceptibility by disabling the c-Src/NF-kB survival pathway resulting in lower Mn-SOD expression, which may be of relevance in hepatocellular carcinoma therapy.
Resumo:
When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II) chelates. Anhydrous copper(II) complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II) and cadmium(II) hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.
Resumo:
Fluorescence resonance energy transfer (FRET) is a non-radiative energy transfer from a fluorescent donor molecule to an appropriate acceptor molecule and a commonly used technique to develop homogeneous assays. If the emission spectrum of the donor overlaps with the excitation spectrum of the acceptor, FRET might occur. As a consequence, the emission of the donor is decreased and the emission of the acceptor (if fluorescent) increased. Furthermore, the distance between the donor and the acceptor needs to be short enough, commonly 10-100 . Typically, the close proximity between the donor and the acceptor is achieved via bioaffinity interactions e.g. antibody binding antigen. Large variety of donors and acceptors exist. The selection of the donor/acceptor pair should be done not only based on the requirements of FRET but also the performance expectancies and the objectives of the application should be considered. In this study, the exceptional fluorescence properties of the lanthanide chelates were employed to develop two novel homogeneous immunoassays: a non-competitive hapten (estradiol) assay based on a single binder and a dual-parametric total and free PSA assay. In addition, the quenching efficiencies and energy transfer properties of various donor/acceptor pairs were studied. The applied donors were either europium(III) or terbium(III) chelates; whereas several organic dyes (both fluorescent and quenchers) acted as acceptors. First, it was shown that if the interaction between the donor/acceptor complexes is of high quality (e.g. biotin-streptavidin) the fluorescence of the europium(III) chelate could be quenched rather efficiently. Furthermore, the quenching based homogeneous non-competitive assay for estradiol had significantly better sensitivity (~67 times) than a corresponding homogeneous competitive assay using the same assay components. Second, if the acceptors were chosen to emit at the emission minima of the terbium(III) chelate, several acceptor emissions could be measured simultaneously without significant cross-talk from other acceptors. Based on these results, the appropriate acceptors were chosen for the dual-parameter assay. The developed homogeneous dual-parameter assay was able to measure both total and free PSA simultaneously using a simple mix and measure protocol. Correlation of this assay to a heterogeneous single parameter assay was excellent (above 0.99 for both) when spiked human plasma samples were used. However, due to the interference of the sample material, the obtained concentrations were slightly lower with the homogeneous than the heterogeneous assay, especially for the free PSA. To conclude, in this work two novel immunoassay principles were developed, which both are adaptable to other analytes. However, the hapten assay requires a rather good antibody with low dissociation rate and high affinity; whereas the dual-parameter assay principle is applicable whenever two immunometric complexes can form simultaneously, provided that the requirements of FRET are fulfilled.
Resumo:
Complexes of Eu3+, Tb3+ and Gd3+ with dipicolinic acid, chelidamic acid and chelidonic acid have been synthesized in order to study the effect of the substituent groups on the luminescence of the lanthanide complexes. The luminescence of the Eu3+ and Tb3+ complexes was quantified by quantum yield measurements. The complexes of Gd3+ have been used to determine the energies of the triplet states of the ligands. The Tb3+ complex synthesized with dipicolinic acid presented the highest quantum yield due to the energy difference between the triplet state of the dipicolinic acid and the emitting level of the Tb3+ ion.
Resumo:
Ribonucleic acid (RNA) has many biological roles in cells: it takes part in coding, decoding, regulating and expressing of the genes as well as has the capacity to work as a catalyst in numerous biological reactions. These qualities make RNA an interesting object of various studies. Development of useful tools with which to investigate RNA is a prerequisite for more advanced research in the field. One of such tools may be the artificial ribonucleases, which are oligonucleotide conjugates that sequence-selectively cleave complementary RNA targets. This thesis is aimed at developing new efficient metal-ion-based artificial ribonucleases. On one hand, to solve the challenges related to solid-supported synthesis of metal-ion-binding conjugates of oligonucleotides, and on the other hand, to quantify their ability to cleave various oligoribonucleotide targets in a pre-designed sequence selective manner. In this study several artificial ribonucleases based on cleaving capability of metal ion chelated azacrown moiety were designed and synthesized successfully. The most efficient ribonucleases were the ones with two azacrowns close to the 3- end of the oligonucleotide strand. Different transition metal ions were introduced into the azacrown moiety and among them, the Zn2+ ion was found to be better than Cu2+ and Ni2+ ions.
Resumo:
Neurons from the anterior subventricular zone (SVZ) of the cerebral cortex migrate tangentially to become interneurons in the olfactory bulb during development and in adult rodents. This migration was defined as neuronophilic, independent of a radial glial substrate. The cortical SVZ and the rostral migratory stream to the olfactory bulb were shown to be rich in 9-O-acetyl GD3 gangliosides (9-O-acGD3), which have been previously shown to be implicated in gliophilic migration in the rodent cerebral cortex and cerebellum. In the present study, we performed SVZ explant cultures using rats during their first postnatal week to analyze the expression of these gangliosides in chain migration of neuronal precursors. We characterized migrating chains of these neuroblasts through morphological analysis and immunocytochemistry for the neural cell adhesion molecule. By using the Jones monoclonal antibody which binds specifically to 9-O-acGD3 we showed that migrating chains from the SVZ explants express 9-O-acGD3 which is distributed in a punctate manner in individual cells. 9-O-acGD3 is also present in migrating chains that form in the absence of radial glia, typical of the neuronophilic chain migration of the SVZ. Our data indicate that 9-O-acetylated gangliosides may participate in neuronophilic as well as gliophilic migration.
Resumo:
Supra molecular architectures of coordination complexes of liydrazones through non covalent interactions have been explored. Molecular selfassernbly driven by weak interactions such as hydrogen bonding, K 'T[, C-1-I "TE, van der Waals interactions, and so forth are currently of tremendous research interest in the fields of molecule based materials. The directional properties of the hydrogembonding interaction associate discrete molecules into aggregate structures that are sufficiently stable to be considered as independent chemical species. Chemistry can borrow natures strategy to utilize hydrogen-bonding as Well as other noncovalent interactions as found in secondary and tertiary structures of proteins such as the double helix folding of DNA, hydrophobic selflorganization of phospholipids in cell membrane etc. In supramolecular chemistry hydrogen bonding plays an important role in forming a variety of architectures. Thus, the wise modulation and tuning of the complementary sites responsible for hydrogenbond formation have led to its application in supramolecular electronics, host-guest chemistry, self-assembly of molecular capsules, nanotubes etc. The work presented in this thesis describes the synthesis and characterization of metal complexes derived from some substituted aroylhydrazones. The thesis is divided into seven chapters.
Resumo:
Thiosemicarbazones have emerged as an important class of ligands over a period of time, for a variety of reasons, such as variable donor properties, structural diversity and biological applications. Interesting as the coordination chemistry may be, the driving force for the study of these ligands has undoubtedly been their biological properties and the majority of the 3000 or so publications on thiosemicarbazones since 2000 have alluded to this feature. Thiosemicarbazones with potential donor atoms in their structural skeleton fascinate coordination chemists with their versatile chelating behavior. The thiosemicarbazones of aromatic aldehydes and ketones form stable chelates with transition metal cations by utilizing both their sulfur and azomethine nitrogen as donor atoms. They have been shown to possess a diverse range of biological activities including anticancer, antitumor, antibacterial, antiviral, antimalarial and antifungal properties owing to their ability to diffuse through the semipermeable membrane of the cell lines. The enhanced effect may be attributed to the increased lipophilicity of the metal complexes compared to the ligand alone.