915 resultados para Gaussian cubature formula
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this paper is to show certain links between univariate interpolation by algebraic polynomials and the representation of polyharmonic functions. This allows us to construct cubature formulae for multivariate functions having highest order of precision with respect to the class of polyharmonic functions. We obtain a Gauss type cubature formula that uses ℳ values of linear functional (integrals over hyperspheres) and is exact for all 2ℳ-harmonic functions, and consequently, for all algebraic polynomials of n variables of degree 4ℳ - 1.
Resumo:
The results in this paper are motivated by two analogies. First, m-harmonic functions in R(n) are extensions of the univariate algebraic polynomials of odd degree 2m-1. Second, Gauss' and Pizzetti's mean value formulae are natural multivariate analogues of the rectangular and Taylor's quadrature formulae, respectively. This point of view suggests that some theorems concerning quadrature rules could be generalized to results about integration of polyharmonic functions. This is done for the Tchakaloff-Obrechkoff quadrature formula and for the Gaussian quadrature with two nodes.
Resumo:
We investigate polynomials satisfying a three-term recurrence relation of the form B-n(x) = (x - beta(n))beta(n-1)(x) - alpha(n)xB(n-2)(x), with positive recurrence coefficients alpha(n+1),beta(n) (n = 1, 2,...). We show that the zeros are eigenvalues of a structured Hessenberg matrix and give the left and right eigenvectors of this matrix, from which we deduce Laurent orthogonality and the Gaussian quadrature formula. We analyse in more detail the case where alpha(n) --> alpha and beta(n) --> beta and show that the zeros of beta(n) are dense on an interval and that the support of the Laurent orthogonality measure is equal to this interval and a set which is at most denumerable with accumulation points (if any) at the endpoints of the interval. This result is the Laurent version of Blumenthal's theorem for orthogonal polynomials. (C) 2002 Elsevier B.V. (USA).
Resumo:
An analytical formula for the cross-spectral density matrix of the electric field of anisotropic electromagnetic Gaussian-Schell model beams propagating in free space is derived by using a tensor method. The effects of coherence on those beams are studied. It is shown that two anisotropic stochastic electromagnetic beams that propagate from the source plane z = 0 into the half-space z > 0 may have different beam shapes (i.e., spectral density) and states of polarization in the half-space, even though they have the same beam shape and states of polarization in the source plane. This fact is due to a difference in the coherence properties of the field in the source plane. (C) 2007 Optical Society of America.
Resumo:
Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
"October 20, 1954"
Resumo:
A study was performed on non-Gaussian statistics of an optical soliton in the presence of amplified spontaneous emission. An approach based on the Fokker-Planck equation was applied to study the optical soliton parameters in the presence of additive noise. The rigorous method not only allowed to reproduce and justify the classical Gordon-Haus formula but also led to new exact results.
Resumo:
In this work, we study a version of the general question of how well a Haar-distributed orthogonal matrix can be approximated by a random Gaussian matrix. Here, we consider a Gaussian random matrix (Formula presented.) of order n and apply to it the Gram–Schmidt orthonormalization procedure by columns to obtain a Haar-distributed orthogonal matrix (Formula presented.). If (Formula presented.) denotes the vector formed by the first m-coordinates of the ith row of (Formula presented.) and (Formula presented.), our main result shows that the Euclidean norm of (Formula presented.) converges exponentially fast to (Formula presented.), up to negligible terms. To show the extent of this result, we use it to study the convergence of the supremum norm (Formula presented.) and we find a coupling that improves by a factor (Formula presented.) the recently proved best known upper bound on (Formula presented.). Our main result also has applications in Quantum Information Theory.