863 resultados para Gaussian Plume model for multiple sources foe Cochin
Resumo:
Pollutants that once enter into the earth’s atmosphere become part of the atmosphere and hence their dispersion, dilution, direction of transportation etc. are governed by the meteorological conditions. The thesis deals with the study of the atmospheric dispersion capacity, wind climatology, atmospheric stability, pollutant distribution by means of a model and the suggestions for a comprehensive planning for the industrially developing city, Cochin. The definition, sources, types and effects of air pollution have been dealt with briefly. The influence of various meteorological parameters such as vector wind, temperature and its vertical structure and atmospheric stability in relation to pollutant dispersal have been studied. The importance of inversions, mixing heights, ventilation coefficients were brought out. The spatial variation of mixing heights studies for the first time on a microscale region, serves to delineate the regions of good and poor dispersal capacity. A study of wind direction fluctuation, σθ and its relation to stability and mixing heights were shown to be much useful. It was shown that there is a necessity to look into the method of σθ computation. The development of Gausssian Plume Model along with the application for multiple sources was presented. The pollutant chosen was sulphur dioxide and industrial sources alone were considered. The percentage frequency of occurrence of inversions and isothermals are found to be low in all months during the year. The spatial variation of mixing heights revealed that a single mixing height cannot be taken as a representative for the whole city have low mixing heights and monsoonal months showed lowest mixing heights. The study of ventilation co-efficients showed values less than the required optimum value 6000m2/5. However, the low values may be due to the consideration of surface wind alone instead of the vertically averaged wind. Relatively more calm conditions and light winds during night and strong winds during day time were observed. During the most of the year westerlies during day time and northeasterlies during night time are the dominant winds. Unstable conditions with high values of σθ during day time and stable conditions with lower values of σθ during night time are the prominent features. Monsoonal months showed neutral stability for most of the time. A study σθ of and Pasquill Stability category has revealed the difficulty in giving a unique value of for each stability category. For the first time regression equations have been developed relating mixing heights and σθ. A closer examination of σθ revealed that half of the range of wind direction fluctuations is to be taken, instead of one by sixth, to compute σθ. The spatial distribution of SO2 showed a more or less uniform distribution with a slight intrusion towards south. Winter months showed low concentrations contrary to the expectations. The variations of the concentration is found to be influenced more by the mixing height and the stack height rather than wind speed. In the densely populated areas the concentration is more than the threshold limit value. However, the values reported appear to be high, because no depletion of the material is assumed through dry or wet depositions and also because of the inclusion of calm conditions with a very light wind speed. A reduction of emission during night time with a consequent rise during day time would bring down the levels of pollution. The probable locations for the new industries could be the extreme southeast parts because the concentration towards the north falls off very quickly resulting low concentrations. In such a case pollutant spread would be towards south and west, thus keeping the city interior relatively free from pollution. A more detailed examination of the pollutant spread by means of models that would take the dry and wet depositions may be necessary. Nevertheless, the present model serves to give the trend of the distribution of pollutant concentration with which one can suggest the optimum locations for the new industries
Resumo:
"September 30, 1963."
Resumo:
Grating Compression Transform (GCT) is a two-dimensional analysis of speech signal which has been shown to be effective in multi-pitch tracking in speech mixtures. Multi-pitch tracking methods using GCT apply Kalman filter framework to obtain pitch tracks which requires training of the filter parameters using true pitch tracks. We propose an unsupervised method for obtaining multiple pitch tracks. In the proposed method, multiple pitch tracks are modeled using time-varying means of a Gaussian mixture model (GMM), referred to as TVGMM. The TVGMM parameters are estimated using multiple pitch values at each frame in a given utterance obtained from different patches of the spectrogram using GCT. We evaluate the performance of the proposed method on all voiced speech mixtures as well as random speech mixtures having well separated and close pitch tracks. TVGMM achieves multi-pitch tracking with 51% and 53% multi-pitch estimates having error <= 20% for random mixtures and all-voiced mixtures respectively. TVGMM also results in lower root mean squared error in pitch track estimation compared to that by Kalman filtering.
Resumo:
We performed Gaussian network model based normal mode analysis of 3-dimensional structures of multiple active and inactive forms of protein kinases. In 14 different kinases, a more number of residues (1095) show higher structural fluctuations in inactive states than those in active states (525), suggesting that, in general, mobility of inactive states is higher than active states. This statistically significant difference is consistent with higher crystallographic B-factors and conformational energies for inactive than active states, suggesting lower stability of inactive forms. Only a small number of inactive conformations with the DFG motif in the ``in'' state were found to have fluctuation magnitudes comparable to the active conformation. Therefore our study reports for the first time, intrinsic higher structural fluctuation for almost all inactive conformations compared to the active forms. Regions with higher fluctuations in the inactive states are often localized to the aC-helix, aG-helix and activation loop which are involved in the regulation and/or in structural transitions between active and inactive states. Further analysis of 476 kinase structures involved in interactions with another domain/protein showed that many of the regions with higher inactive-state fluctuation correspond to contact interfaces. We also performed extensive GNM analysis of (i) insulin receptor kinase bound to another protein and (ii) holo and apo forms of active and inactive conformations followed by multi-factor analysis of variance. We conclude that binding of small molecules or other domains/proteins reduce the extent of fluctuation irrespective of active or inactive forms. Finally, we show that the perceived fluctuations serve as a useful input to predict the functional state of a kinase.
Resumo:
The main aim of the study is to give a clear picture of various meteorological factors affecting the dispersal of pollutants. One such important developing metropolis, namely Madras, is chosen for the present study. The study throws light into the occurrence of inversions, isothermals and lapse conditions and the vertical and horizontal extent of mixing of pollutants. The thesis also aims to study the wind climatology and atmospheric stability .The study gives a insight to the spatial distribution of sulphudioxide concentration using the Gaussian plume model, which accounts for various industrial sources. The researcher suggests optimum locations for industries and various steps to reduce air pollution.
Resumo:
The deteriorating air quality especially in urban environments is a cause of serious concern. In spite of being an effective sink, the atmosphere also has its own limitations in effectively dispersing the pollutants being dumped into it continuously by various sources, mainly industries. Many a time, it is not the higher emissions that cause alarming level of pollutants but the unfavourable atmospheric conditions under which the atmosphere is not able to disperse them effectively, leading to accumulation of pollutants near the ground. Hence, it is imperative to have an estimate of the atmospheric potential for dispersal of the substances emitted into it. This requires a knowledge of mixing height, ventilation coefficient, wind and stability of the region under study. Mere estimation of such pollution potential is not adequate, unless the probable distribution of concentration of pollutants is known. This can be obtained by means of mathematical models. The pollution potential coupled with the distribution of concentration provides a good basis for initiating steps to mitigate air pollution in any developing urban area. In this thesis, a fast developing industrial city, namely, Trivandrum is chosen for estimating the pollution potential and determining the spatial distribution of sulphur dioxide concentration. Each of the parameters required for pollution potential is discussed in detail separately. The thesis is divided into nine chapters.
Resumo:
A new model has been developed for assessing multiple sources of nitrogen in catchments. The model (INCA) is process based and uses reaction kinetic equations to simulate the principal mechanisms operating. The model allows for plant uptake, surface and sub-surface pathways and can simulate up to six land uses simultaneously. The model can be applied to catchment as a semi-distributed simulation and has an inbuilt multi-reach structure for river systems. Sources of nitrogen can be from atmospheric deposition, from the terrestrial environment (e.g. agriculture, leakage from forest systems etc.), from urban areas or from direct discharges via sewage or intensive farm units. The model is a daily simulation model and can provide information in the form of time series at key sites, or as profiles down river systems or as statistical distributions. The process model is described and in a companion paper the model is applied to the River Tywi catchment in South Wales and the Great Ouse in Bedfordshire.
Resumo:
Surveys can collect important data that inform policy decisions and drive social science research. Large government surveys collect information from the U.S. population on a wide range of topics, including demographics, education, employment, and lifestyle. Analysis of survey data presents unique challenges. In particular, one needs to account for missing data, for complex sampling designs, and for measurement error. Conceptually, a survey organization could spend lots of resources getting high-quality responses from a simple random sample, resulting in survey data that are easy to analyze. However, this scenario often is not realistic. To address these practical issues, survey organizations can leverage the information available from other sources of data. For example, in longitudinal studies that suffer from attrition, they can use the information from refreshment samples to correct for potential attrition bias. They can use information from known marginal distributions or survey design to improve inferences. They can use information from gold standard sources to correct for measurement error.
This thesis presents novel approaches to combining information from multiple sources that address the three problems described above.
The first method addresses nonignorable unit nonresponse and attrition in a panel survey with a refreshment sample. Panel surveys typically suffer from attrition, which can lead to biased inference when basing analysis only on cases that complete all waves of the panel. Unfortunately, the panel data alone cannot inform the extent of the bias due to attrition, so analysts must make strong and untestable assumptions about the missing data mechanism. Many panel studies also include refreshment samples, which are data collected from a random sample of new
individuals during some later wave of the panel. Refreshment samples offer information that can be utilized to correct for biases induced by nonignorable attrition while reducing reliance on strong assumptions about the attrition process. To date, these bias correction methods have not dealt with two key practical issues in panel studies: unit nonresponse in the initial wave of the panel and in the
refreshment sample itself. As we illustrate, nonignorable unit nonresponse
can significantly compromise the analyst's ability to use the refreshment samples for attrition bias correction. Thus, it is crucial for analysts to assess how sensitive their inferences---corrected for panel attrition---are to different assumptions about the nature of the unit nonresponse. We present an approach that facilitates such sensitivity analyses, both for suspected nonignorable unit nonresponse
in the initial wave and in the refreshment sample. We illustrate the approach using simulation studies and an analysis of data from the 2007-2008 Associated Press/Yahoo News election panel study.
The second method incorporates informative prior beliefs about
marginal probabilities into Bayesian latent class models for categorical data.
The basic idea is to append synthetic observations to the original data such that
(i) the empirical distributions of the desired margins match those of the prior beliefs, and (ii) the values of the remaining variables are left missing. The degree of prior uncertainty is controlled by the number of augmented records. Posterior inferences can be obtained via typical MCMC algorithms for latent class models, tailored to deal efficiently with the missing values in the concatenated data.
We illustrate the approach using a variety of simulations based on data from the American Community Survey, including an example of how augmented records can be used to fit latent class models to data from stratified samples.
The third method leverages the information from a gold standard survey to model reporting error. Survey data are subject to reporting error when respondents misunderstand the question or accidentally select the wrong response. Sometimes survey respondents knowingly select the wrong response, for example, by reporting a higher level of education than they actually have attained. We present an approach that allows an analyst to model reporting error by incorporating information from a gold standard survey. The analyst can specify various reporting error models and assess how sensitive their conclusions are to different assumptions about the reporting error process. We illustrate the approach using simulations based on data from the 1993 National Survey of College Graduates. We use the method to impute error-corrected educational attainments in the 2010 American Community Survey using the 2010 National Survey of College Graduates as the gold standard survey.
Resumo:
This study explored youth caregiving for a parent with multiple sclerosis (MS) from multiple perspectives, and examined associations between caregiving and child negative (behavioural emotional difficulties, somatisation) and positive (life satisfaction, positive affect, prosocial behaviour) adjustment outcomes overtime. A total of 88 families participated; 85 parents with MS, 55 partners and 130 children completed questionnaires at Time 1. Child caregiving was assessed by the Youth Activities of Caregiving Scale (YACS). Child and parent questionnaire data were collected at Time 1 and child data were collected 12 months later (Time 2). Factor analysis of the child and parent YACS data replicated the four factors (instrumental, social-emotional, personal-intimate, domestic-household care), all of which were psychometrically sound. The YACS factors were related to parental illness and caregiving context variables that reflected increased caregiving demands. The Time 1 instrumental and social-emotional care domains were associated with poorer Time 2 adjustment, whereas personal-intimate was related to better adjustment and domestic-household care was unrelated to adjustment. Children and their parents exhibited highest agreement on personal-intimate, instrumental and total caregiving, and least on domestic-household and social-emotional care. Findings delineate the key dimensions of young caregiving in MS and the differential links between caregiving activities and youth adjustment.
Resumo:
We present two six-parameter families of anisotropic Gaussian Schell-model beams that propagate in a shape-invariant manner, with the intensity distribution continuously twisting about the beam axis. The two families differ in the sense or helicity of this beam twist. The propagation characteristics of these shape-invariant beams are studied, and the restrictions on the beam parameters that arise from the optical uncertainty principle are brought out. Shape invariance is traced to a fundamental dynamical symmetry that underlies these beams. This symmetry is the product of spatial rotation and fractional Fourier transformation.
Resumo:
Anisotropic Gaussian Schell-model (AGSM) fields and their transformation by first-order optical systems (FOS’s) forming Sp(4,R) are studied using the generalized pencils of rays. The fact that Sp(4,R), rather than the larger group SL(4,R), is the relevant group is emphasized. A convenient geometrical picture wherein AGSM fields and FOS’s are represented, respectively, by antisymmetric second-rank tensors and de Sitter transformations in a (3+2)-dimensional space is developed. These fields are shown to separate into two qualitatively different families of orbits and the invariants over each orbit, two in number, are worked out. We also develop another geometrical picture in a (2+1)-dimensional Minkowski space suitable for the description of the action of axially symmetric FOS’s on AGSM fields, and the invariants, now seven in number, are derived. Interesting limiting cases forming coherent and quasihomogeneous fields are analyzed.
Resumo:
Using analysis-by-synthesis (AbS) approach, we develop a soft decision based switched vector quantization (VQ) method for high quality and low complexity coding of wideband speech line spectral frequency (LSF) parameters. For each switching region, a low complexity transform domain split VQ (TrSVQ) is designed. The overall rate-distortion (R/D) performance optimality of new switched quantizer is addressed in the Gaussian mixture model (GMM) based parametric framework. In the AbS approach, the reduction of quantization complexity is achieved through the use of nearest neighbor (NN) TrSVQs and splitting the transform domain vector into higher number of subvectors. Compared to the current LSF quantization methods, the new method is shown to provide competitive or better trade-off between R/D performance and complexity.
Resumo:
This paper presents a comparative population dynamics study of three closely related species of buttercups (Ranunculus repens, R. acris, and R. bulbosus). The study is based on an investigation of the behaviour of the seeds in soil under field conditions and a continuous monitoring of survival and reproduction of some 9000 individual plants over a period of 21/2 years in a coastal grassland in North Wales. The data were analysed with the help of an extension of Leslie's matrix method which makes possible an simultaneous treatment of vegetative and sexual reproduction. It was found that R. repens (a) depends more heavily on vegetative as compared with sexual reproduction, (b) shows indications of negatively density-dependent population regulation, and (c) exhibits little variation in population growth rates from site to site and from one year to the next. In contrast, R. bulbosus (a) depends exclusively on sexual reproduction, (b) shows indications of a positively density-dependent population behaviour, and (c) exhibits great variation in population growth rates from site to site and from one year to the next. R. acris exhibits an intermediate behaviour in all these respects. It is suggested that the attributes of R. repens are those expected of a species inhabiting a stable environment, while R. bulbosus exhibits some of the characteristics of a fugitive species.
Resumo:
We address the issue of rate-distortion (R/D) performance optimality of the recently proposed switched split vector quantization (SSVQ) method. The distribution of the source is modeled using Gaussian mixture density and thus, the non-parametric SSVQ is analyzed in a parametric model based framework for achieving optimum R/D performance. Using high rate quantization theory, we derive the optimum bit allocation formulae for the intra-cluster split vector quantizer (SVQ) and the inter-cluster switching. For the wide-band speech line spectrum frequency (LSF) parameter quantization, it is shown that the Gaussian mixture model (GMM) based parametric SSVQ method provides 1 bit/vector advantage over the non-parametric SSVQ method.
Resumo:
We present a complete solution to the problem of coherent-mode decomposition of the most general anisotropic Gaussian Schell-model (AGSM) beams, which constitute a ten-parameter family. Our approach is based on symmetry considerations. Concepts and techniques familiar from the context of quantum mechanics in the two-dimensional plane are used to exploit the Sp(4, R) dynamical symmetry underlying the AGSM problem. We take advantage of the fact that the symplectic group of first-order optical system acts unitarily through the metaplectic operators on the Hilbert space of wave amplitudes over the transverse plane, and, using the Iwasawa decomposition for the metaplectic operator and the classic theorem of Williamson on the normal forms of positive definite symmetric matrices under linear canonical transformations, we demonstrate the unitary equivalence of the AGSM problem to a separable problem earlier studied by Li and Wolf [Opt. Lett. 7, 256 (1982)] and Gori and Guattari [Opt. Commun. 48, 7 (1983)]. This conn ction enables one to write down, almost by inspection, the coherent-mode decomposition of the general AGSM beam. A universal feature of the eigenvalue spectrum of the AGSM family is noted.