880 resultados para Gastrointestinal Agents
Resumo:
To evaluate the passage of cytokines through the gastrointestinal tract, we investigated the digestion of interleukin-8 (IL-8) and tumour necrosis factor α (TNFα), in vitro and in vivo, and their propensity to induce intestinal inflammation. We serially immuno-assayed IL-8 and TNFα solutions co-incubated with each of three pancreatin preparations at pH 4.5 and pH 8. We gavaged IL-8, TNFα and marker into 15 Wistar rats, and measured their faecal cytokine concentrations by ELISA and histologically examined their guts. IL-8 immunoreactivity was extinguished by all pancreatin preparations after 1 h of incubation at 37 °C. TNFα concentration progressively fell from 1 to 4 h with all enzyme preparations. Buffer control samples maintained their cytokine concentrations throughout incubation. No IL-8 or TNFα was detected in any rat faecal pellets. There was no significant proinflammatory effect of the gavaged cytokines on rat intestine. IL-8 and TNFα in aqueous solution could well be fully digested in the CF gut when transit time is normal and exogenous enzymes are provided, although cytokines swallowed in viscous sputum may be protected from such digestion
Resumo:
Objectives: To examine the trends in the prescribing of subsidised proton pump inhibitors (PPIs) and histamine receptor antagonists (H2RAs), in the Australian population from 1995 to 2006 to encourage discussion regarding appropriate clinical use. PPIs and H2RAs are the second highest drug cost to the publicly subsidised Pharmaceutical Benefits Scheme (PBS). Design: Government data on numbers of subsidised scripts, quantity and doses for PPIs and H2RAs were analysed by gender and age, dose and indication. Main outcome measure: Drug utilisation as DDD [defined daily dose]/1000 population/day. Results: The use of combined PPIs increased by 1318%. Utilisation increased substantially after the relaxation of the subsidised indications for PPIs in 2001. Omeprazole had the largest market share but was substituted by its S-enantiomer esomeprazole after its introduction in 2002. There was considerable use in the elderly with the peak use being in those aged 80 years and over. The utilisation of H2RAs declined 72% over 12 years. Conclusions: PPI use has increased substantially, not only due to substitution of H2RAs but to expansion in the overall market. Utilisation does not appear to be commensurate with prevalence of gastro-oesophageal reflux disease (GORD) nor with prescribing guidelines for PPIs, with significant financial costs to patients and PBS. This study encourages clinical discussion regarding quality use of these medicines. © 2010 John Wiley & Sons, Ltd.
Resumo:
Coumarins represent an important class of phenolic compounds with multiple biological activities, including inhibition of lipidic peroxidation and neutrophil-dependent anion superoxide generation, anti-inflammatory and immunosuppressor actions. All of these proprieties are essential for that a drug may be used in the treatment of inflammatory bowel disease. The present study examined intestinal anti-inflammatory activity of coumarin and its derivative, the 4-hydroxycoumarin on experimental ulcerative colitis in rats. This was performed in two different experimental settings, i.e. when the colonic mucosa is intact or when the mucosa is in process of recovery after an initial insult. The results obtained revealed that the coumarin and 4-hydroxycoumarin, at doses of 5 and 25 mg/kg, significantly attenuated the colonic damage induced by trinitrobenzenesulphonic acid (TNBS) in both situations, as evidenced macroscopically, microscopically and biochemically. This effect was related to an improvement in the colonic oxidative status, since coumarin and 4-hydroxycoumarin prevented the glutathione depletion that occurred as a consequence of the colonic inflammation. © 2008 Pharmaceutical Society of Japan.
Resumo:
Context - Several paradoxical cases of infliximab-induced or-exacerbated psoriatic lesions have been described in the recent years. There is disagreement regarding the need to discontinue infliximab in order to achieve the resolution of these adverse cutaneous reactions specifically in inflammatory bowel disease (IBD) patients. Objective - To systematically review the literature to collect information on IBD patients that showed this adverse cutaneous reaction, focusing mainly on the therapeutic approach. Methods - A systematic literature review was performed utilizing Medline, Embase, SciELO and Lilacs databases. Published studies were identified, reviewed and the data were extracted. Results - Thirty-four studies (69 IBD patients) met inclusion criteria for review. There was inconsistency in reporting of some clinical and therapeutic aspects. Most patients included had Crohn's disease (89.86%), was female (47.83%), had an average age of 27.11 years, and no reported history of psoriasis (84.05%). The patients developed primarily plaque-type psoriasis (40.58%). There was complete remission of psoriatic lesions in 86.96% of IBD patients, existing differences in the therapeutic approaches; cessation of infliximab therapy led to resolution in 47.83% of cases and 43.48% of patients were able to continue infliximab therapy. Conclusion - As increasing numbers of IBD patients with psoriasis induced or exacerbated by infliximab, physicians should be aware of its clinical manifestations so that appropriate diagnosis and treatment are properly established. The decision whether to continue or discontinue infliximab should be individualized.
Resumo:
Gastric ulcer is an excoriated area of the gastric mucosa. It is among the predominant gastrointestinal chronic diseases. The essential oils represent an important part of the traditional pharmacopoeia in many countries and have been successfully used for gastroprotection and ulcer healing. Thus, this review presents the experimental activity of essential oils traditionally used in the gastric ulcer prevention and treatment, considering their families, part of the plant studied, bioassays, and their mechanisms of gastroprotection and ulcer healing, with the aim of stimulating novel studies in the search for a new phytomedicine to treat gastric diseases. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.
Resumo:
16.1. Agents to control acidity 16.1.1 Antacids 16.1.2 Proton pump inhibitors and antibiotics for Helicobacter pylori 16.1.3 Histamine H2 receptor antagonists 16.1.4 Misoprostol 16.1.5 Sucralfate 16.2. Prokinetics and emetics 16.2.1 Introduction to prokinetics 16.2.2 Prokinetic agents 16.2.3 Emesis with cytotoxic drugs and drugs for 16.2.4 Motion sickness and drugs for 16.2.5 Drugs for post-operative emesis 16.3. Agents used for diarrhea, constipation, irritable bowel syndrome 16.3.1 Treatment for diarrhea 16.3.2 Treatment for constipation 16.3.3 Treatment for opioid-induced constipation 16.4. Drugs for inflammatory bowel disease 16.4.1 Mesalazine 16.4.2 Glucocorticoids 16.4.3 Infliximab
Resumo:
Although the treatment of most cancers has improved steadily, only few metastatic solid tumors can be cured. Despite responses, refractory clones often emerge and the disease becomes refractory to available treatment modalities. Furthermore, resistance factors are shared between different treatment regimens and therefore loss of response typically occurs rapidly, and there is a tendency for cross-resistance between agents. Therefore, new agents with novel mechanisms of action and lacking cross-resistance to currently available approaches are needed. Modified oncolytic adenoviruses, featuring cancer-celective cell lysis and spread, constitute an interesting drug platform towards the goals of tumor specificity and the implementation of potent multimodal treatment regimens. In this work, we demonstrate the applicability of capsid-modified, transcriptionally targeted oncolytic adenoviruses in targeting gastric, pancreatic and breast cancer. A variety of capsid modified adenoviruses were tested for transductional specificity first in gastric and pancreatic cancer cells and patient tissues and then in mice. Then, oncolytic viruses featuring the same capsid modifications were tested to confirm that successful transductional targeting translates into enhanced oncolytic potential. Capsid modified oncolytic viruses also prolonged the survival of tumor bearing orthotopic models of gastric and pancreatic cancer. Taken together, oncolytic adenoviral gene therapy could be a potent drug for gastric and pancreatic cancer, and its specificity, potency and safety can be modulated by means of capsid modification. We also characterized a new intraperitoneal virus delivery method in benefit for the persistence of gene delivery to intraperitoneal gastric and pancreatic cancer tumors. With a silica implant a steady and sustained virus release to the vicinity of the tumor improved the survival of the orthotopic tumor bearing mice. Furthermore, silica gel-based virus delivery lowered the toxicity mediating proimflammatory cytokine response and production of total and anti-adenovirus neutralizing antibodies (NAbs). On the other hand, silica shielded the virus against pre-excisting NAbs, resulting in a more favourable biodistribution in the preimmunized mice. The silica implant might therefore be of interest in treating intraperitoneally disseminated disease. Cancer stem cells are thought to be resistant to conventional cancer drugs and might play an important role in cancer relapse and the formation of metastasis. Therefore, we examined if transcriptionally modified oncolytic adenoviruses are able to kill these cells. Complete eradication of CD44+CD24-/low putative breast cancer stem cells was seen in vitro, and significant antitumor activity was detected in CD44+CD24-/low –derived tumor bearing mice. Thus, genetically engineered oncolytic adenoviruses have potential in destroying cancer initiating cells, which may have relevance for the elimination of cancer stem cells in humans.
Resumo:
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent human endopeptidases that can degrade virtually all components of the extracellular matrix (ECM). They are classified into eight subgroups according to their structure and into six subgroups based on their substrate-specificity. MMPs have been implicated in inflammation, tissue destruction, cell migration, arthritis, vascular remodeling, angiogenesis, and tumor growth and invasion. MMPs are inhibited by their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Different MMPs function in the same tasks depending on the tissue or cancer subtype. I investigated the role of recently discovered MMPs, especially MMPs-19 and -26, in intestinal inflammation, in intestinal and cutaneous wound healing, and in intestinal cancer. Several MMPs and TIMPs were studied to determine their exact location at tissue level and to obtain information on possible functions of MMPs in such tissues and diseases as the healthy intestine, inflammatory bowel disease (IBD), neonatal necrotizing enterocolitis (NEC), pyoderma gangrenosum (PG), and colorectal as well as pancreatic cancers. In latent celiac disease (CD), I attempted to identify markers to predict later onset of CD in children and adolescents. The main methods used were immunohistochemistry, in situ hybridization, and Taqman RT-PCR. My results show that MMP-26 is important for re-epithelialization in intestinal and cutaneous wound healing. In colon and pancreatic cancers, MMP-26 seems to be a marker of invasive potential, although it is not itself expressed at the invasive front. MMP-21 is upregulated in pancreatic cancer and may be associated with tumor differentiation. MMPs-19 and -28 are associated with normal tissue turnover in the intestine, but they disappear in tumor progression as if they were protective markers . MMP-12 is an essential protease in intestinal inflammation and tissue destruction, as seen here in NEC and in previous CD studies. In patients with type 1 diabetes (T1D), MMPs-1, -3, and -12 were upregulated in the intestinal mucosa. Furthermore, MMP-7 was strongly elevated in NEC. In a model of aberrant wound repair, PG, MMPs-8, -9, and 10 and TNFα may promote ECM destruction, while absence of MMP-1 and MMP-26 from keratinocytes retards re-epithelialization. Based on my results, I suggest MMP-26 to be considered a putative marker for poor prognosis in pancreatic and colon cancer. However, since it functions differently in various tissues and tumor subtypes, this use cannot be generalized. Furthermore, MMP-26 is a beneficial marker for wound healing if expressed by migrating epithelial cells. MMP-12 expression in latent CD patients warrants research in a larger patient population to confirm its role as a specific marker for CD in pathologically indistinct cases. MMP-7 should be considered one of the most crucial proteases in NEC-associated tissue destruction; hence, specific inhibitors of this MMP are worth investigating. In PG, TNFα inhibitors are potential therapeutic agents, as shown already in clinical trials. In conclusion, studies of several MMPs in specific diseases and in healthy tissues are needed to elucidate their roles at the tissue level. MMPs and TIMPs are not exclusively destructive or reparative in tissues. They seem to function differently in different tissues. To identify selective MMP inhibitors, we must thoroughly understand the MMP profile (degradome) and their functions in various organs not to interfere with normal reparative functions during wound repair or beneficial host-response effects during cancer initiation and growth.
Resumo:
It has become clear that inflammation is beneficial to man, there are situations though that the inflammatory response causes damage to the host that is harmful to health. When the inflammatory response fails or is too strong, the health of the host is damaged and disease can occur. The implication of intestinal disease caused by an ineffective immune response is of great social and economic burden to society. The overarching purpose of this thesis is to assess inflammatory signalling targets associated with immune mediated disorders such as IBD, IBS and inflammatory liver disease. By assessing these targets and modifying their function I hope to contribute and expand further the pre-existing information on these disorders and improve the therapeutic interventions available in these debilitating conditions. I will assess the role of inflammation in disorders of the GI tract and liver IBD, IBS, hepatic inflammatory injury and furthermore, I will use pharmaceutical agents to activate and suppress components of the immune system. I will examine the inflammatory response in experimental models of disease for IBD and liver injury, I will attempt to alter these pathways using pharmaceutical intervention to delineate the disease causing mechanism that may lead to clinically relevant therapeutic interventions. In regards to IBS, I will attempt to improve the existing knowledge that exists in relation to the pathogenesis of this functional bowel disorder. I will attempt to define a mechanism by which the low grade mucosal inflammation that has been demonstrated by others arises and what this inflammation is induced by. The overall aim of this thesis is to attempt to further understand the mechanisms behind GI and liver disease. Looking at the inflammatory response in these specific conditions and how they can be altered may lead to exciting new therapies for inflammatory conditions in the gastrointestinal tract.
Resumo:
Many neuropeptides are similar in size, amino acid composition and charge to antimicrobial peptides. This study aimed to determine whether the neuropeptides substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), displayed antimicrobial activity against Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. SP, NPY, VIP and CGRP displayed variable degrees of antimicrobial activity against all the pathogens tested with the exception of S. aureus. These antimicrobial activities add a further dimension to the immunomodulatory roles for neuropeptides in the inflammatory and immune responses. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Acute gut disorder is a cause for significant medicinal and economic concern. Certain individual pathogens of the gut, often transmitted in food or water, have the ability to cause severe discomfort. There is a need to manage such conditions more effectively. The route of reducing the risk of intestinal infections through diet remains largely unexplored. Antibiotics are effective at inhibiting pathogens; however, these should not be prescribed in the absence of disease and therefore cannot be used prophylactically. Moreover, their indiscriminate use has reduced effectiveness. Evidence has accumulated to suggest that some of the health-promoting bacteria in the gut (probiotics) can elicit a multiplicity of inhibitory effects against pathogens. Hence, an increase in their numbers should prove effective at repressing pathogen colonisation if/when infectious agents enter the gut. As such, fortification of indigenous bifidobacteria/lactobacilli by using prebiotics should improve protection. There are a number of potential mechanisms for lactic acid bacteria to reduce intestinal infections. Firstly, metabolic endproducts such as acids excreted by these micro-organisms may lower the gut pH to levels below those at which pathogens are able to effectively compete. Also, many lactobacilli and bifidobacteria species are able to excrete natural antibiotics, which can have a broad spectrum of activity. Other mechanisms include an improved immune stimulation, competition for nutrients and blocking of pathogen adhesion sites in the gut. Many intestinal pathogens like type 1 fimbriated Escherichia coli, salmonellae and campylobacters utilise oligosaccharide receptor sites in the gut. Once established, they can then cause gastroenteritis through invasive and/or toxin forming properties. One extrapolation of the prebiotic concept is to simulate such receptor sites in the gut lumen. Hence, the pathogen is 'decoyed' into not binding at the host mucosal interface. The combined effects of prebiotics upon the lactic acid flora and anti-adhesive strategies may lead towards new dietary interventions against food safety agents.
Resumo:
The main method used for the control of gastrointestinal nematodes in sheep production is the application of chemotherapeutic agents, which often lead to the selection of parasites resistant to given active principles. Biological control can be considered a promising alternative, contributing to an increase in the efficacy of verminous control. We determined the in vitro activity and in situ survival of the predatory fungi Arthrobotrys musiformis and Arthrobotrys conoides during passage through the gastrointestinal tract of sheep after oral administration of conidia in microencapsulated form and as a liquid in natura. Initial in vitro tests showed that both fungi were efficient in the predation of trichostrongylid L3 larvae present in the faeces of sheep naturally infected with gastrointestinal nematodes. The fungi presented high nematophagous activity, which was 99.3% for A. conoides and 73.7% for A. musiformis. A. conoides did not survive passage through the gastrointestinal tract under the conditions of the present experiment. On the other hand, A. musiformis was reisolated after administration in either microencapsulated or liquid form, suggesting that this species is a promising alternative for the control of nematodes in sheep since it survives without any protection (in natura). © Springer 2005.
Resumo:
Strychnos pseudoquina St. Hil. (Loganiaceae) was investigated for its ability to protect the gastric mucosa against injuries caused by non-steroidal anti-inflammatory drugs (piroxicam) and a necrotizing agent (HCl/EtOH) in mice. The MeOH extract and enriched alkaloidic fraction (EAF) provided significant protection in experimental models wheer used at doses of 250 and 1000 mg/kg. In vivo tests were carried out to evaluate for possible toxic effects and no mortality was observed up to the 5 g/kg dose level. Phytochemical investigation led to the isolation of a new indole alkaloid, which elucidated the observed pharmacological effects. © 2005 Pharmaceutical Society of Japan.
Resumo:
OBJECTIVE: The use of vasopressors for treatment of hypotension in sepsis may have adverse effects on microcirculatory blood flow in the gastrointestinal tract. The aim of this study was to measure the effects of three vasopressors, commonly used in clinical practice, on microcirculatory blood flow in multiple abdominal organs in sepsis. DESIGN: Random order, cross-over design. SETTING: University laboratory. SUBJECTS: Eight sedated and mechanically ventilated pigs. INTERVENTIONS: Pigs were exposed to fecal peritonitis-induced septic shock. Mesenteric artery flow was measured using ultrasound transit time flowmetry. Microcirculatory flow was measured in gastric, jejunal, and colon mucosa; jejunal muscularis; and pancreas, liver, and kidney using multiple-channel laser Doppler flowmetry. Each animal received a continuous intravenous infusion of epinephrine, norepinephrine, and phenylephrine in a dose increasing mean arterial pressure by 20%. The animals were allowed to recover for 60 mins after each drug before the next was started. MEASUREMENTS AND MAIN RESULTS: During infusion of epinephrine (0.8 +/- 0.2 mug/kg/hr), mean arterial pressure increased from 66 +/- 5 to 83 +/- 5 mm Hg and cardiac index increased by 43 +/- 9%. Norepinephrine (0.7 +/- 0.3 mug/kg/hr) increased mean arterial pressure from 70 +/- 4 to 87 +/- 5 mm Hg and cardiac index by 41 +/- 8%. Both agents caused a significant reduction in superior mesenteric artery flow (11 +/- 4%, p < .05, and 26 +/- 6%, p < .01, respectively) and in microcirculatory blood flow in the jejunal mucosa (21 +/- 5%, p < .01, and 23 +/- 3%, p < .01, respectively) and in the pancreas (16 +/- 3%, p < .05, and 8 +/- 3%, not significant, respectively). Infusion of phenylephrine (3.1 +/- 1.0 mug/kg/min) increased mean arterial pressure from 69 +/- 5 to 85 +/- 6 mm Hg but had no effects on systemic, regional, or microcirculatory flow except for a 30% increase in jejunal muscularis flow (p < .01). CONCLUSIONS: Administration of the vasopressors phenylephrine, epinephrine, and norepinephrine failed to increase microcirculatory blood flow in most abdominal organs despite increased perfusion pressure and-in the case of epinephrine and norepinephrine-increased systemic blood flow. In fact, norepinephrine and epinephrine appeared to divert blood flow away from the mesenteric circulation and decrease microcirculatory blood flow in the jejunal mucosa and pancreas. Phenylephrine, on the other hand, appeared to increase blood pressure without affecting quantitative blood flow or distribution of blood flow.
Resumo:
The immune system faces a considerable challenge in its efforts to maintain tissue homeostasis in the intestinal mucosa. It is constantly confronted with a large array of antigens, and has to prevent the dissemination and proliferation of potentially harmful agents while sparing the vital structures of the intestine from immune-mediated destruction. Complex interactions between the highly adapted effector cells and mechanisms of the innate and adaptive immune system generally prevent the luminal microflora from penetrating the intestinal mucosa and from spreading systemically. Non-haematopoietic cells critically contribute to the maintenance of local tissue homeostasis in an antigen-rich environment by producing protective factors (e.g. production of mucus by goblet cells, or secretion of microbicidal defensins by Paneth cells) and also through interactions with the adaptive and innate immune system (such as the production of chemotactic factors that lead to the selective recruitment of immune cell subsets). The complexity of the regulatory mechanisms that control the local immune response to luminal antigens is also reflected in the observation that mutations in immunologically relevant genes often lead to the development of uncontrolled inflammatory reactions in the microbially colonized intestine of experimental animals.