22 resultados para Gasifiers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study has been to enable a greater understanding of the biomass gasification process through the development and use of process and economic models. A new theoretical equilibrium model of gasification is described using the operating condition called the adiabatic carbon boundary. This represents an ideal gasifier working at the point where the carbon in the feedstock is completely gasified. The model can be used as a `target' against which the results of real gasifiers can be compared, but it does not simulate the results of real gasifiers. A second model has been developed which uses a stagewise approach in order to model fluid bed gasification, and its results have indicated that pyrolysis and the reactions of pyrolysis products play an important part in fluid bed gasifiers. Both models have been used in sensitivity analyses: the biomass moisture content and gasifying agent composition were found to have the largest effects on performance, whilst pressure and heat loss had lesser effects. Correlations have been produced to estimate the total installed capital cost of gasification systems and have been used in an economic model of gasification. This has been used in a sensitivity analysis to determine the factors which most affect the profitability of gasification. The most important influences on gasifier profitability have been found to be feedstock cost, product selling price and throughput. Given the economic conditions of late 1985, refuse gasification for the production of producer gas was found to be viable at throughputs of about 2.5 tonnes/h dry basis and above, in the metropolitan counties of the United Kingdom. At this throughput and above, the largest element of product gas cost is the feedstock cost, the cost element which is most variable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämä työ on osa tutkimusprojektia, jonka tarkoituksena on kehittää uudentyyppinen kaasutustekniikkaan perustuva kiinteistöjen lämmitysjärjestelmä. Työ on tehty osaksi kirjallisuustutkimuksena käyttämällä hyödyksi alalla tehtyjä tutkimuksia ja kirjallisuutta. Kirjallisuustutkimuksen tavoitteena oli luoda yhtenäinen tietopaketti lämmitysjärjestelmän kehityksen tueksi. Työn kokeellisen osion tavoitteena oli tutkia lämmitysjärjestelmän kaasuttimen prototyypin toimintaa ja selvittää sen käyttöön liittyviä ongelmia. Kirjallisuusosiossa käsitellään kaasutuksen vaiheita: alkulämpeneminen ja kuivuminen, syttyminen, pyrolyysi sekä jäännöshiilen palaminen ja kaasutus. Varsinkin pyrolyysiprosessin tunteminen on merkittävää, kun halutaan parantaa biomassan poltto- ja kaasutusprosessien suunnittelua. Lisäksi kirjallisuusosiossa käsitellään kaasutuksessa syntyvän tuotekaasun ominaisuuksia: koostumus, lämpöarvo, tiheys ja palamisominaisuudet. Tuotekaasun ominaisuudet vaihtelevat suuresti kaasutusprosessista ja -olosuhteista sekä polttoaineesta riippuen. Tuotekaasun kohdalta käsitellään myös sen käyttökohteita. Perinteisesti kaasutuksen tuotekaasua käytetään lämmöntuotantoon, mutta tulevaisuuden haasteena on tuotekaasun käyttö kaasuturbiineissa sähköntuotantoon. Tuotekaasun käyttöä laajemmin rajoittaa sen sisältämät epäpuhtaudet. Tämän vuoksi kirjallisuusosiossa käsitellään myös tuotekaasun puhdistusmenetelmiä ja sen poltossa syntyvien päästöjen vähentämiskeinoja. Kokeellisessa osiossa suoritettiin puupellettien kaasutuskokeita TTKK:n Energia- ja prosessitekniikan laitoksen raskaaseen laboratorioon rakennetulla kaasutusreaktorilla. Kaasutuskokeiden avulla löydettiin kaasutusreaktorin toiminnan ongelmakohdat ja pystyttiin aloittamaan lämmitysjärjestelmän jatkokehitys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kaasutuksen kannattavuus ja toteutustapa on ollut tarkea ja useiden tutkimuksien kohde. Biomassan kaasutuksen ja siina kaytettavien laitteiden nykytila on epavarma. Niinpa lisatutkimukselle ja tarkasteluille on edelleen tarvetta. Tama tyo keskittyy nykyisin kaytettavien kaasutusprosessien ja laitteiden tarkasteluun. Tyossa kaydaan lapi useita uusimpia kaasutusprojekteja ja esitetaan niista tutkimustarpeita. Lisaksi kaasutusprosessissa pitaa saada hallintaan niille tyypillisia ongelmia kuten kaasun puhdistus, kaasun kasittely, biomassan kasittely ja kaasuttimen muuraus, joista esitetaan lisatietoa. Edelleen esitetaan kaasutusprosessien taydellinen luokittelu. On huomattava etta biomassan kaasutusta tarvitaan jotta saadaan toteutettua EUn hahmotteleman ja saataman energiapolitiikan vaatima kasvu ja kehitys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The developing energy markets and rising energy system costs have sparked the need to find new forms of energy production and increase the self-sufficiency of energy production. One alternative is gasification, whose principles have been known for decades, but it is only recently when the technology has become a true alternative. However, in order to meet the requirements of modern energy production methods, it is necessary to study the phenomenon thoroughly. In order to understand the gasification process better and optimize it from the viewpoint of ecology and energy efficiency, it is necessary to develop effective and reliable modeling tools for gasifiers. The main aims of this work have been to understand gasification as a process and furthermore to develop an existing three-dimensional circulating fluidized bed modeling tool for modeling of gasification. The model is applied to two gasification processes of 12 and 50 MWth. The results of modeling and measurements have been compared and subsequently reviewed. The work was done in co-operation with Lappeenranta University of Technology and Foster Wheeler Energia Oy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The iron ore pelletizing process consumes high amounts of energy, including nonrenewable sources, such as natural gas. Due to fossil fuels scarcity and increasing concerns regarding sustainability and global warming, at least partial substitution by renewable energy seems inevitable. Gasification projects are being successfully developed in Northern Europe, and large-scale circulating fluidized bed biomass gasifiers have been commissioned in e.g. Finland. As Brazil has abundant biomass resources, biomass gasification is a promising technology in the near future. Biomasses can be converted into product gas through gasification. This work compares different technologies, e.g. air, oxygen and steam gasification, focusing on the use of the product gas in the indurating machine. The use of biosynthetic natural gas is also evaluated. Main parameters utilized to assess the suitability of product gas were adiabatic flame temperature and volumetric flow rate. It was found that low energy content product gas could be utilized in the traveling grate, but it would require burner’s to be changed. On the other hand, bio-SGN could be utilized without any adaptions. Economical assessment showed that all gasification plants are feasible for sizes greater than 60 MW. Bio-SNG production is still more expensive than natural gas in any case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellulose is the major constituent of most plants of interest as renewable sources of energy and is the most extensively studied form of biomass or biomass constituent. Predicting the mass loss and product yields when cellulose is subjected to increased temperature represents a fundamental problem in the thermal release of biomass energy. Unfortunately, at this time, there is no internally consistent model of cellulose pyrolysis that can organize the varied experimental data now available or provide a guide for additional experiments. Here, we present a model of direct cellulose pyrolysis using a multistage decay scheme that we first presented in the IJQC in 1984. This decay scheme can, with the help of an inverse method of assigning reaction rates, provide a reasonable account of the direct fast pyrolysis yield measurements. The model is suggestive of dissociation states of d-glucose (C6H10O5,), the fundamental cellulose monomer. The model raises the question as to whether quantum chemistry could now provide the dissociation energies for the principal breakup modes of glucose into C-1, C-2, C-3, C-4, and C-5 compounds. These calculations would help in achieving a more fundamental description of volatile generation from cellulose pyrolysis and could serve as a guide for treating hemicellulose and lignin, the other major biomass constituents. Such advances could lead to the development of a predictive science of biomass pyrolysis that would facilitate the design of liquifiers and gasifiers based upon renewable feedstocks. (C) 1998 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to study the thermodynamic, ecological and fluid-dynamic aspects of a circulating fluidized bed gasifier using sugar cane bagasse as biomass, in order to estimate a model of its normal operation. In the initial stage was analysed the composition of biomass selected (sugar cane bagasse) and its lower heating value (LHV) was calculated. The energy balance of the gasifier was done, being the volumetric flow of air, synthesis gas and biomass estimated. Also the power produced by this gasifier was theoretically estimated. Then the circulating fluidized bed gasifier was designed for operation with approximately 100 kg/h of processed biomass. Cross-sectional area of the reactor, feeder size, diameter of the exit zone of the gases and minimum height of the expanded bed were selected. Some bed gasifier hydrodynamic factors were also studied. The minimum fluidization velocity, fluidization terminal velocity, and average fluidizing velocity were calculated, in order to understand the fluid-dynamic behaviour of gasification of this fuel. It was obtained a theoretical model that can support a possible prototype of circulating fluidized bed gasifier biomass. Finally, there were studied the ecological aspects of the gasifier, through an overall methodology. Ecological efficiencies were estimated for two scenarios: first considering the carbon cycle and thereafter disregarding the carbon cycle. In both cases, it can be proved the ecological viability of the project. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The updraft biomass gasifiers currently available produce a gas with high tar content. For almost all downstream applications a substantial reduction of the tar concentration is required. The gravimetric tar concentration behavior in producer gas, obtained at a modified updraft fixed bed gasifier, was studied. The feedstock feeding system was modified respect to the traditional updraft gasification design in order to decrease the tar concentration in the producer gas; the material is feeding continuously through a conduit in the base of the reactor over the grate. The caloric power of the syngas obtained was slightly lower than the typical value for this type of reactor and the highest efficiency obtained for the woodchip gasification was 77%. The highest tar concentration obtained during the experiments was 1652.7 mg N m-3 during the first our of experiments, comparable with the smaller value reported for the updraft reactors, this value is reduced significantly after the stabilization of the gasification process in the reactor. The smaller value obtained was 21 mg N m-3. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work is to develop a non-stoichiometric equilibrium model to study parameter effects in the gasification process of a feedstock in downdraft gasifiers. The non-stoichiometric equilibrium model is also known as the Gibbs free energy minimization method. Four models were developed and tested. First a pure non-stoichiometric equilibrium model called M1 was developed; then the methane content was constrained by correlating experimental data and generating the model M2. A kinetic constraint that determines the apparent gasification rate was considered for model M3 and finally the two aforementioned constraints were implemented together in model M4. Models M2 and M4 showed to be the more accurate among the four developed models with mean RMS (root mean square error) values of 1.25 each.Also the gasification of Brazilian Pinus elliottii in a downdraft gasifier with air as gasification agent was studied. The input parameters considered were: (a) equivalence ratio (0.28-035); (b) moisture content (5-20%); (c) gasification time (30-120 min) and carbon conversion efficiency (80-100%). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biomass gasification systems have been used for a long time and prove to be a good alternative to the generation of energy problems. This type of management requires a simple installation and maintenance which gives them a high availability. In Biomass project via Call CTEnerg 33/2006-1, funded by the Ministry of Science and Technology - MCT - Brazil, the Group Energy Systems Optimization – GOSE - at FEG - UNESP built and tested two prototypes of gasifiers. These is fed with 25 kg / h of dry wood (chips), and 50 Nm3 / h of air to produce gas at a flow rate of approximately 70 Nm3 / h of wood (syngas) at a temperature approximately 600 ° C. In this work of graduation, studies were conducted on the materials used in both the gasifier as well as cleaning the filter synthesis gases. The system of gas cleaning and conditioning is vital to ensure the life of the Internal Combustion Engine. In this case the studies of different filters for small gasification systems (properties, materials used, characteristics, types, etc.) are very relevant to its use in the prototype of the college campus. Were also performed a technical and economic analysis of a cogeneration system that consists in the combination of the downdraft gasifier studied in this work, an internal combustion engine, two heat exchangers and a SRA (absorption system refrigerator). Were calculated the costs of electricity generation, hot water and cold water. Finally, we analyzed the economic feasibility of the project