895 resultados para Gases--Thermal properties.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T(c) and Delta H(c) increases. As a Conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this study was to evaluate the potential application of a lightweight concrete produced with lightweight coarse aggregate made of the water treatment sludge and sawdust (lightweight composite), by determining the thermal properties and possible environmental impact of future residue of this concrete. Two types of concrete were prepared: concrete produced with the lightweight composite dosed with cement/sand/composite/water in a mass ratio of 1:2.5:0.67:0.6 and conventional concrete dosed with cement/sand/crushed stone/water in a mass ratio of 1:4.8:5.8:0.8. The thermal properties were determined by the hot wire parallel technique. The possible environmental impact was measured using the procedures and guidelines of the Brazilian Association of Technical Standards - ABNT. The concrete produced with the lightweight composite presented a 23% lower thermal conductivity than the conventional concrete. The concrete produced with the lightweight composite presented a set of thermal properties suitable for the application of this concrete in non-structural sealing elements. The concentration of aluminum in the solubilized extract of the concrete produced with the lightweight composite was much lower than the concentration of aluminum in the water treatment sludge, confirming the possible reduction of environmental impact of this composite for use in concrete. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of poly(l,l-lactide)-block-poly(ethylene glycol)-block-poly(l,l-lactide) (PLLA-PEG-PLLA) were synthesized from l,l-lactide polymerization using stannous 2-ethylhexanoate, Sn(Oct)(2) as initiator and di-hydroxy-terminated poly(ethylene glycol) (PEG) (M (n) = 4000 g mol(-1)) as co-initiator. The chemical linkage between the PEG segment and the PLA segments was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetry analysis (TG) revealed the copolymers composition and was capable to show the deleterious effect of an excess of Sn(Oct)(2) in the polymer thermal stability, while Differential Scanning Calorimetry (DSC) allowed the observation of the miscibility between the PLLA and PEG segments in the different copolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was to verify the effect of drying conditions on thermal properties and resistant starch content of green banana flour (Musa cavendishii). The green banana flour is a complex-carbohydrates source, mainly of resistant starch, and quantifying its gelatinization is important to understand how it affects food processing and the functional properties of the flour. The green banana flour was obtained by drying unripe peeled bananas (first stage of ripening) in a dryer tunnel at 52 degrees C, 55 degrees C and 58 degrees C and air velocity at 0.6 m s(-1), 1.0 m s(-1) and 1.4 m s(-1). The results obtained from differential scanning calorimetry, (DSC) curves show a single endothermic transition and a flow of maximum heating at peak temperatures from (67.95 +/- 0.31)degrees C to (68.63 +/- 0.28) degrees C. ANOVA shows that only drying temperature influenced significantly (P < 0.05) the gelatinization peak temperature (Tp). Gelatinization enthalpy (Delta H) varied from 9.04 J g(-1) to 11.63 J g(-1) and no significant difference was observed for either temperature or air velocity. The resistant starch content of the flour produced varied from (40.9 +/- 0.4) g/100 g to (58.5 +/- 5.4) g/100 g, on dry basis (d. b.), and was influenced by the combination of drying conditions: flour produced at 55 degrees C/1.4 m s(-1) and 55 degrees C/1.0 m s(-1) presented higher content of resistant starch. (c) 2009 Elsevier Ltd. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microencapsulation of Lippia sidoides essential oil was carried out by spray drying. Blends of maltodextrin and gum arabic were used as carrier. Spray dried microparticles were characterized using conventional (thermogravimetry, evolved gas analysis) and combined (thermogravimetry-mass spectrometry analysis) thermal analysis techniques in order to evaluate the abilities of carriers with different compositions in retaining and in releasing the core vs. dynamic heating. Thermal analysis was useful to evaluate the physico-chemical interactions between the core and carriers and to determine the protective effect of the carriers on the evaporation of essential oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing need for starches with specific characteristics makes it important to study unconventional starches and their modifications in order to meet consumer demands. The aim of this work was to study physicochemical characteristics of native starch and phosphate starch of S. lycocarpum. Native starch was phosphated with sodium tripolyphosphate (5-11%) added with stirring. Chemical composition, morphology, density, binding ability to cold water, swelling power and solubility index, turbidity and syneresis, rheological and calorimetric properties were determined. Phosphorus was not detected in the native sample, but the phosphating process produced modified starches with phosphorus contents of 0.015, 0.092 and 0.397%, with the capacity of absorbing more water, either cold or hot. Rheological data showed the strong influence of phosphorus content on viscosity of phosphate starch, with lower pasting temperature and peak viscosity higher than those of native starch. Enthalpy was negatively correlated with the phosphorus content, requiring 9.7; 8.5; 8.1 and 6.4 kJ g-1 of energy for the transition from the amorphous to the crystalline state for the starch granules with phosphorus contents of 0; 0.015; 0.092 and 0.397%, respectively. Cluster analysis and principal component analysis showed that starches with 0.015 and 0.092% phosphorus have similar characteristics and are different from the others. Our results show that the characteristics of phosphate modified S. lycocarpum starch have optimal conditions to meet the demands of raw materials, which require greater consistency in stickiness, combined with low rates of retrogradation and syneresis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most extensively studied Heusler alloys are those based on the Ni-Mn-Ga system. However, to overcome the high cost of Gallium and the usually low martensitic transformation temperature, the search for Ga-free alloys has been recently attempted, particularly, by introducing In, Sn or Sb. In this work, two alloys (Mn50Ni35.5In14.5 and Ni50Mn35In15) have been obtained by melt spinning. We outline their structural and thermal behaviour. Mn50Ni35.5In14.5 alloy has the transformation above room temperature whereas Ni50Mn35In15 does not have this transformation in the temperature range here analyzed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercially available PCM RT 20, RT 27, SP 22, A17 and SP 25 A8. Were analyzed using dynamic and step method of heat flux DSC. The results of the dinamic and step method were compared with commercial valures. It was found that RT 20 & RT 27 showed good conforming of results with commercial values while SP 22 A17 & SP 25 A8 did not show conformity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baru (Dipteryx alata Vog.), a species of legume found in the Brazilian savannas, was investigated in this study for the composition of its flesh and seed. Thermal analyses, Thermogravimetry (TG), and Differential Scanning Calorimetry (DSC) were used to investigate the proteins in defatted meal, concentrate, and protein isolate. The protein concentrate was extracted at pH 10, followed by a precipitation at the isoelectric point to obtain the isolate that was spray dried. The thermogravimetric curves were obtained under a nitrogen atmosphere with a 100 mL/minutes flow. The initial, final and peak temperatures and mass loss were analyzed. Within the performed temperature ranges studied, the defatted meal and concentrate presented four steps of mass loss, while the isolate showed only two steps. The protein content of defatted meal from Baru nuts was higher than that of the isolate. On the other hand, there was a reduction in enthalpy, which suggests that the process applied to obtain the baru concentrate and isolate led to protein denaturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By employing the embedded-atom potentials of Mei et ai.[l], we have calculated the dynamical matrices and phonon dispersion curves for six fee metals (Cu,Ag,Au,Ni,Pd and Pt). We have also investigated, within the quasiharmonic approximation, some other thermal properties of these metals which depend on the phonon density of states, such as the temperature dependence of lattice constant, coefficient of linear thermal expansion, isothermal and adiabatic bulk moduli, heat capacities at constant volume and constant pressure, Griineisen parameter and Debye temperature. The computed results are compared with the experimental findings wherever possible. The comparison shows a generally good agreement between the theoretical values and experimental data for all properties except the discrepancies of phonon frequencies and Debye temperature for Pd, Pt and Au. Further, we modify the parameters of this model for Pd and Pt and obtain the phonon dispersion curves which is in good agreement with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Beckman Helium Discharge Detector has been found to be sensitive to the fixed gases oxygen, nitrogen, and hydrogen at detection levels 10-100 times more sensitive than possible with a Bow-Mac Thermal Conductivity Detector. Detection levels o~ approximately 1.9 E-4 ~ v/v oxygen, 3.1 E-4 ~ v/v nitrogen, and 3.0 E-3 ~ v/v hydrogen are estimated. Response of the Helium Discharge Detector was not linear, but is useable for quantitation over limited ranges of concentration using suitably prepared working standards. Cleanliness of the detector discharge electrodes and purity of the helium carrier and discharge gas were found to be critical to the operation of the detector. Higher sensitivities of the Helium Discharge Detector may be possible by the design and installation of a sensitive, solid-state electrometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead chromium oxide is a photoconductive dielectric material tha t has great potential of being used as a room temperature photodetector. In this research, we made ceramic pellets of this compound as well as potassium doped compound Pb2-xKxCr05, where x=O, 0.05, 0.125. We also investigate the properties of the lanthanum doped sample whose chemical formula is Pb1.85Lao.15Cr05' The electronic, magnetic and thermal properties of these materials have been studied. Magnetization measurements of the Pb2Cr05 sample indicate a transition at about 310 K, while for the lanthanum doped sample the transition temperature is at about 295 K indicating a paramagnetic behavior. However, the potassium doped samples are showing the transition from paramagnetic state to diamagnetic state at different temperatures for different amounts of potassium atoms present in the sample. We have studied resistivity as a function of temperature in different gas environments from 300 K to 900 K. The resistivity measurement of the parent sample indicates a conducting to insulating transition at about 300 K and upon increasing the temperature further, above 450 K the sample becomes an ionic conductor. As temperature increases a decrease in resistance is observed in the lanthanum/potassium doped samples. Using Differential Scanning Calorimetry experiment an endothermic peak is observed for the Pb2Cr05 and lanthanum/potassium doped samples at about 285 K.