993 resultados para Gaseous Tracers


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of the present work was to develop, separately, methodology for production of two gaseous tracers through the sodium iodide NaI marked with 123I. Found in the nature in form different, the iodine has been used in diverse works in the area of the industry and health. These two forms of the gaseous iodine, the methyl iodide, CH3I, and molecular iodine, I2, are very unstable and volatile in the ambient temperature and presents different problems in clean-up and monitoring systems. The syntheses were processed with sodium iodide (NaI) 1M aqueous solution marked with 123I. The production of gas I2 was realized with in chlorine acid (HCl) and sodium iodate salt (NaIO3) and the CH3I was used, the salt of NaI and the reagent (CH3)2SO4. The production of gases was initially realized through in unit in glass with an inert material and the purpose was to study the kinetic of reaction and to determine the efficiency of production. The two synthesis occurs in the reaction bottle and after of produced, the gas is stored in the collect bottle that contains a starch solution for fixed the I2, and in syntheses of CH3I contains a silver nitrate solution for your fixation. To determine the efficiency of production of gases, analytic tests were realized, where the consumption of iodide ions of the bottle of reaction are measured. The optimization of production of the each gaseous tracer was studied varying parameter as: concentration of iodide, concentration of acid and temperature. After, the syntheses of the radiotracers were realized in the compact unit, having been used as main reagent the salt radiated of sodium iodide, Na123I. The transportation of elementary iodine and methyl iodine was studied by a scintillation detector NaI (2 x 2)” positioned in the reaction bottle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, it was developed a methodology for the determination of the dispersion of a gaseous tracer in porous media using the radiotracer technique. In order to evaluate several porous media, a cylindrical filter was constructed in PVC and connected to a system with constant flow. Inside this unit silica crystals (16-20) mesh was used as porous media and CH3Br (Methyl Bromide) marked with 82Br was used as radiotracer. An instantaneous pulse of tracer was applied in the system entrance and registered by two NaI (3x3)” scintillation detectors located one before and the other after the filter. The curves produced by the radioactive cloud and recorded by the detector were analyzed statistically using the weighted moment method. The mathematical model one considered as great dispersion of tracer was used to evaluate the flow conditions inside the filter system. The results show us that the weight moment method associated with radiotracer techniques is useful to evaluated an industrial filter and allows to measure the residence time distribution, τ, and the axial dispersion, DAB, gas in a porous medium.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2, and NOx were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependant on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16×1015-5.42×1016 kg-1, 0.03-0.72 g.kg-1, and 3.25-37.94 g.kg-1 respectively for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4 to 100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) [1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air pollution is ranked by the World Health Organisation as one of the top ten contributors to the global burden of disease and injury. Exposure to gaseous air pollutants, even at a low level, has been associated with cardiorespiratory diseases (Vedal, Brauer et al. 2003). Most recent epidemiological studies of air pollution have used time-series analyses to explore the relationship between daily mortality or morbidity and daily ambient air pollution concentrations based on the same day or previous days (Hajat, Armstrong et al. 2007). However, most of the previous studies have examined the association between air pollution and health outcomes using air pollution data from a single monitoring site or average values from a few monitoring sites to represent the whole population of the study area. In fact, for a metropolitan city, ambient air pollution levels may differ significantly among the different areas. There is increasing concern that the relationships between air pollution and mortality may vary with geographical area (Chen, Mengersen et al. 2007). Additionally, some studies have indicated that socio-economic status can act as a confounder when investigating the relation between geographical location and health (Scoggins, Kjellstrom et al. 2004). This study examined the spatial variation in the relationship between long-term exposure to gaseous air pollutants (including nitrogen dioxide (NO2), ozone (O3) and sulphur dioxide (SO2)), and cardiorespiratory mortality in Brisbane, Australia, during the period 1996 - 2004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A number of epidemiological studies have been conducted to research the adverse effects of air pollution on mortality and morbidity. Hypertension is the most important risk factor for cardiovascular mortality. However, few previous studies have examined the relationship between gaseous air pollution and morbidity for hypertension. ---------- Methods: Daily data on emergency hospital visits (EHVs) for hypertension were collected from the Peking University Third Hospital. Daily data on gaseous air pollutants (sulfur dioxide (SO2) and nitrogen dioxide (NO2)) and particulate matter less than 10 μm in aerodynamic diameter (PM10) were collected from the Beijing Municipal Environmental Monitoring Center. A time-stratified case-crossover design was conducted to evaluate the relationship between urban gaseous air pollution and EHVs for hypertension. Temperature and relative humidity were controlled for. ---------- Results: In the single air pollutant models, a 10 μg/m3 increase in SO2 and NO2 were significantly associated with EHVs for hypertension. The odds ratios (ORs) were 1.037 (95% confidence interval (CI): 1.004-1.071) for SO2 at lag 0 day, and 1.101 (95% CI: 1.038-1.168) for NO2 at lag 3 day. After controlling for PM10, the ORs associated with SO2 and NO2 were 1.025 (95% CI: 0.987-1.065) and 1.114 (95% CI: 1.037-1.195), respectively.---------- Conclusion: Elevated urban gaseous air pollution was associated with increased EHVs for hypertension in Beijing, China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM2.5) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10-40 % (by energy). With ethanol fumigation, NO and PM2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles; consequently, using a diesel oxidation catalyst will also assist in reducing particle number emissions.