997 resultados para Gas removal
Resumo:
The biooxidation of ferrous ion into ferric ion by Acidithiobacillus ferrooxidans can be potentially used for the removal of H2S from industrial gases. In this work, Fe3+ ions were obtained through the oxidation of Fe2+ using the LR strain of At. ferrooxidans immobilized in PVC stands in a pilot-scale bioreactor, while H2S was removed in an absorption tower equipped with Rasching rings. At. ferrooxidans LR strain cells were immobilized by inoculating the bacterium in a Fe2+-mineral medium and percolating it through the support. After complete Fe2+ oxidation, which took around 90 h, the reactor was washed several times with sulfuric acid (pH 1.7) before a new cycle was started. Four additional cycles using fresh Fe2+ mineral medium were then run. During these colonization cycles, the time required for complete iron oxidation decreased, dropping to about 60 h in the last cycle. The batch experiments in the H2S gas removal trials resulted in a gas removal rate of about 98-99% under the operational conditions employed. In the continuous experiments with the bioreactor coupled to the gas absorption column, a gas removal efficiency of almost 100% was reached after 500 min. Precipitate containing mainly sulfur formed during the experimental trial was identified by EDX. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.
Resumo:
We present the results of a spectroscopic survey of 675 bright (16.5 < b(J) < 18) galaxies in a 6 degrees field centred on the Fornax cluster with the FLAIR-II spectrograph on the UK Schmidt Telescope. Three galaxy samples were observed: compact galaxies to search for new blue compact dwarfs, candidate M 32-like compact dwarf ellipticals, and a subset of the brightest known cluster members in order to study the cluster dynamics. We measured redshifts for 516 galaxies, of which 108 were members of the Fornax Cluster. Defining dwarf galaxies to be those with b(J) greater than or equal to 15 (M-B greater than or equal to - 16.5), there are a total of 62 dwarf cluster galaxies in our sample. Nine of these are new cluster members previously misidentified as background galaxies. The cluster dynamics show that the dwarf galaxies are still falling into the cluster whereas the giants are virialized. We classified the observed galaxies as late-type if we detected H alpha emission at an equivalent width greater than 1 Angstrom. The spectra were obtained through fixed apertures, so they reflect activity in the galaxy cores, but this does not significantly bias the classifications of the compact dwarfs in our sample. The new classifications reveal a higher rate of star formation among the dwarf galaxies than suggested by morphological classification: 35 per cent have significant H alpha emission indicative of star formations but only 19 per cent were morphologically classified as late-types. The star-forming dwarf galaxies span the full range of physical sizes and we find no evidence in our data for a distinct class of star-forming blue compact dwarf (BCD) galaxy. The distribution of scale sizes is consistent with evolutionary processes which transform late-type dwarfs to early-type dwarfs. The fraction of dwarfs with active star formation drops rapidly towards the cluster centre: this is the usual density-morphology relation confirmed here for dwarf galaxies. The star-forming dwarfs are concentrated in the outer regions of the cluster, the most extreme in an infalling subcluster. We estimate gas depletion time-scales for five dwarfs with detected Hi emission: these are long (of order 10(10) yr), indicating that an active gas removal process must be involved if they are transformed into gas-poor dwarfs as they fall further into the cluster. Finally, in agreement with our previous results, we find no compact dwarf elliptical (M 32-like) galaxies in the Fornax Cluster.
Resumo:
Este trabalho faz uma análise comparativa do desempenho termodinâmico, num mesmo fluído frigorigéneo, de ciclos frigoríficos em diferentes regimes térmicos, de modo a avaliar as vantagens na utilização da compressão em dois andares sobre a compressão em andar único, para as mesmas temperaturas de evaporação e condensação, nos respectivos permutadores de calor. No estudo o escoamento do fluído é considerado sem perdas de carga, as expansões isentálpicas e as compressões isentrópicas. Os vários rendimentos têm valor unitário de modo a não particularizar o resultado. As temperaturas de regime neste trabalho são -40ºC para a evaporação do fluído e de 40ºC para a sua condensação. As temperaturas intermédias estão no intervalo situado entre -20ºC e 8ºC, com intervalos de 1ºC entre si. Os processos alvo de observação são arrefecimento intermédio (intercooler), remoção do título de vapor à pressão intermédia (flash gas removal), e a combinação dos dois num único processo, com a injecção total de fluído, para o mesmo fluído refrigerante, o NH3 Seguidamente foi analisada a opção em cascata para NH. Foram quantificados valores de COP utilizando compressão seca e compressão húmida. 3/NH3 e em dois fluidos, NH3/CO2 Constatou-se que o processo intercooler e flash gas removal em sistema combinado em compressão seca tem desempenho cerca de 15,5% superior ao ciclo de compressão num só andar, e que a compressão húmida tem melhor desempenho do que a compressão seca, nomeadamente o melhor desempenho na compressão húmida é 11,7% superior ao melhor desempenho na compressão seca.
Resumo:
Työn tarkoituksena oli tutkia kuinka kaasukuplat jakautuvat sellususpensioon, kun prosessiolosuhteita muutetaan. Kuplien kokojakauman avulla pyritään kartoittamaan kuinka kaasukuplat pilkkoutuvat ja onko olemassa raja-arvoa, milloin tehon lisäys ei enää pilko sellususpensiossa olevia kuplia pienemmiksi. Jakaumien avulla voidaan mahdollisesti kehittää kaasunpoistoa. Työssä selvitettiin voidaanko kameratekniikkaa käyttää kuplakokojen määrittämiseen sellusulpusta. Läpinäkymätön sellumassa tarjoaa kuvaukselle haasteellisen ympäristön. Myöskään kirjallisuudessa ei vastaavaa menetelmää aikaisemmin oltu käytetty. Kuvatusta materiaalista laskettiin kuplien halkaisijat, joita pyrittiin tarkastelemaan tilastollisesti. Tilastollinen tarkastelu toi eroja mittauspisteiden välille. Kuplien halkaisijoiden perusteella mallinnettiin kuplakokoon vaikuttavat prosessisuureet lineaarisella regressioanalyysillä. Mallinnuksen perusteella saatiinvasteisiin vaikuttavat riippumattomat muuttujat ja niiden matemaattiset malliyhtälöt. Tuloksina saatiin selville, että kuplien kokojakaumissa on eroja sekoitussäiliön eri puolilla. Sekoitussäiliössä suurten kuplien suhteellinen osuus kasvaa kaasupitoisuuden ja sakeuden noustessa. Mallinnuksen tärkeimpänä tuloksena voidaan todeta, että sakeus ja kaasutilavuus vaikuttavat kuplakokoon kasvattavasti. Kierrosnopeuden kasvattaminen pienentää kuplakokoa. Visuaalisen informaation avulla on helpompi ymmärtää kuinka kuplat käyttäytyvät.
Resumo:
Teollisuuden jäähdytysjärjestelmiä tarvitaan prosessien lämpötilan ja paineen hal-litsemiseen. Vesi on käytetyin lämmönsiirtoaine hyvän saatavuutensa, halvan hin-nan ja korkean lämmönsiirtokyvyn ansiosta. Jäähdytysjärjestelmät jaetaan kolmeen päätyyppiin, joita ovat läpivirtausjäähdytys, suljettu ja avoin kiertojäähdytys. Kullakin järjestelmätyypillä on tyypilliset alatyyppinsä. Avoimella kiertojär-jestelmällä on eniten alatyyppejä, joista yleisin on jäähdytystorni. Jäähdytystorneja on kolmea tyyppiä: märkä-, kuiva ja hybriditorni. Kullakin järjestelmätyypillä on ominaiset piirteensä käyttökohteiden, ympäristövaikutusten, ohjattavuuden, investointi- ja käyttökulujen suhteen, joita tässä työssä esitellään. Työssä tutkitaan teollisuuden jäähdytysjärjestelmien esittelyn lisäksi erään ali-painekaasunpoistimen soveltuvuutta suljetun kiertojäähdytysjärjestelmän kaasun-poistoon. Suljettuun kiertojäähdytysjärjestelmään jää ilmaa täyttövaiheessa ja kul-keutuu liuenneena käytettävän jäähdytysveden mukana. Muodostuva ylikylläinen seos synnyttää veden sekaan ilmakuplia, jotka aiheuttavat korroosiota kemiallisesti ja kuluttamalla. Lisäksi kaasukuplat vievät tilavuutta nesteeltä. Tämä pienentää järjestelmän jäähdytystehoa merkittävästi, koska kaasun lämmönsiirtokyky verrat-tuna veden lämmönsiirtokykyyn on pieni. Työssä esitellään myös muita mahdolli-sia suljetun järjestelmän kaasulähteitä ja niiden aiheuttamia ongelmia. Alipainekaasunpoistimen kaasunerotustehokkuutta mitattiin jäähdytysvesinäyttei-den selkeytymisnopeudella ja lämmönsiirtimien tehon paranemisella. Kahden viikon tarkastelujaksolla selkeytymisajat paranivat 36–60 % eri mittauspaikoissa ja lämmönsiirtimien tehot paranivat 6–29 %. Järjestelmään kuitenkin jäi merkittävä määrä kaasua, vaikka laitteen käyttöä jatkettiin tarkastelujakson jälkeen, joten tavoitteisiin ei päästy. Tutkitun alipainekaasunpoistolaitteen ei todettu soveltuvan tehdasympäristöön kestämättömyyden, hankalakäyttöisyyden ja tehottomuuden takia. Tulokset kuitenkin osoittavat, että kaasunerotuksella on merkittävä vaikutus suljetun jäähdytysjärjestelmän toimivuuteen ja saavutettavaan jäähdytystehoon.
Resumo:
The main objective of this work was to investigate three packing materials (polyurethane foam, sugar-cane bagasse, and coconut fibre) for biofiltration of a gaseous mixture containing hydrogen sulphide (H(2)S). Mixed cultures were obtained from two sources, aerated submerged biofilters and activated sludge, and were utilised as inoculums. Biofilters reached 100% removal efficiency after two clays of operation. The empty bed residence time was 495 for each of the biofilters. The reactors were operated simultaneously, and the inlet concentrations of H(2)S varied between 184 and 644 ppmv during the long-term continuous operation of the biofilters (100 clays). Average removal efficiencies remained above 99.3%, taking into consideration the entire period of operation. Average elimination capacities reached by the biofilters packed with polyurethane foam, coconut fibre, and sugarcane bagasse were in the range of 17.8-66.6; 18.9-68.8, and 18.7-72.9g m(-3) h(-1), respectively. Finally, we concluded that the packing materials tested in this work are appropriate for the long-term biofiltration of hydrogen sulphide. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Iowa Department of Public Health (IDPH), Hazardous Waste Site Health Assessment Program was asked by the US Environmental Protection Agency (EPA) to review a round of air sampling data. The air data was collected and analyzed during a removal action at the Le Mars Coal Gas Site in Le Mars, Iowa. EPA asked IDPH to determine from the air data if additional monitoring is necessary throughout the removal action to protect nearby residents from exposure.
Resumo:
Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This thesis analyses the potential of wood biochar as an adsorbent in removal of sulphate from produced water. In worldwide offshore oil and gas industry, a large volume of waste water is generated as produced water. Sulphur compounds present in these produced water streams can cause environmental problems, regulatory problems and operational issues. Among the various sulphur removal technologies, the adsorption technique is considered as a suitable method since the design is simple, compact, economical and robust. Biochar has been studied as an adsorbent for removal of contaminants from water in a number of studies due to its low cost, potential availability, and adsorptive characteristics. In this study, biochar produced through fast pyrolysis of bark, hardwood sawdust, and softwood sawdust were characterized through a series of tests and were analysed for adsorbent properties. Treating produced water using biochar sourced from wood waste is a two-fold solution to environmental problems as it reduces the volume of these wastes. Batch adsorption tests were carried out to obtain adsorption capacities of each biochar sample using sodium sulphate solutions. The highest sulphur adsorption capacities obtained for hardwood char, softwood char and bark char were 11.81 mg/g, 9.44 mg/g, and 7.94 mg/g respectively at 10 °C and pH=4. The adsorption process followed the second order kinetic model and the Freundlich isotherm model. Adsorption reaction was thermodynamically favourable and exothermic. The overall analysis concludes that the wood biochar is a feasible, economical, and environmental adsorbent for removal of sulphate from produced water.
Resumo:
The recently discovered mesoporous molecular sieve MCM-41 was tested as an adsorbent for VOC removal. Its adsorption/desorption properties were evaluated and compared with other hydrophobic zeolites (silicalite-1 and zeolite Y) and a commercial activated carbon, BPL. The adsorption isotherms of some typical VOCs (benzene, carbon tetrachloride, and n-hexane) on MCM-41 are of type IV according to the IUPAC classification, drastically different from the other microporous adsorbents, indicating that VOCs, in the gas phase, have to be at high partial pressures in order to make the most of the new mesoporous material as an adsorbent for VOC removal. However, a proper modification of the pore openings of MCM-41 can change the isotherm types from type IV to type I without remarkable loss of the accessible pare volumes and, therefore, significantly enhance the adsorption performance at low partial pressures. Adsorption isotherms of water on these adsorbents are all of type V, demonstrating that they possess a similar hydrophobicity. Desorption of VOCs from MCM-41 could be achieved at lower temperatures (50-60 degrees C), while this had to be conducted at higher temperatures (100-120 degrees C) for microporous adsorbents, zeolites, and activated carbons.
Resumo:
A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.
Resumo:
The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.