971 resultados para Gas distribution.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Dynamic ventilation (3)He-MRI is a new method to assess pulmonary gas inflow. As differing airway diameters throughout the ventilatory cycle can influence gas inflow this study intends to investigate the influence of volume and timing of a He gas bolus with respect to the beginning of the tidal volume on inspiratory gas distribution. MATERIALS AND METHODS: An ultrafast 2-dimensional spoiled gradient echo sequence (temporal resolution 100 milliseconds) was used for dynamic ventilation (3)He-MRI of 11 anesthetized and mechanically ventilated pigs. The applied (3)He gas bolus was varied in volume between 100 and 200 mL. A 150-mL bolus was varied in its application time after the beginning of the tidal volume between 0 and 1200 milliseconds. Signal kinetics were evaluated using an in-house developed software after definition of parameters for the quantitative description of (3)He gas inflow. RESULTS: The signal rise time (time interval between signal in the parenchyma reaches 10% and 90% of its maximum) was prolonged with increasing bolus volume. The parameter was shortened with increasing delay of (3)He application after the beginning of the tidal volume. Timing variation as well as volume variation showed no clear interrelation to the signal delay time 10 (time interval between signal in the trachea reaches 50% of its maximum and signal in the parenchyma reaches 10% of its maximum). CONCLUSIONS: Dynamic ventilation (3)He-MRI is able to detect differences in bolus geometry performed by volume variation. Pulmonary gas inflow as investigated by dynamic ventilation (3)He-MRI tends to be accelerated by an increasing application delay of a (3)He gas bolus after the beginning of the tidal volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shipping list no.: 91-280-P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"December 1990."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is important to maintain a uniform distribution of gas and liquid in large diameter packed columns to maintain mass transfer efficiency on scaling up. This work presents measurements and methods of evaluating maldistributed gas flow in packed columns. Little or no previous work has been done in this field. A gas maldistribution number, F, was defined, based on point to point velocity variations in the gas emerging from the top of packed beds. f has a minimum value for a uniformly distributed flow and much larger values for maldistributed flows. A method of testing the quality of vapour distributors is proposed, based on "the variation of f with packed height. A good gas distributor requires a short packed depth to give a good gas distribution. Measurements of gas maldistribution have shown that the principle of dynamic similarity is satisfied if two geometrically similar beds are operated at the same Reynold's number. The validity of f as a good measure of gas maldistribution, and the principle of dynamic similarity are tested statistically by Multi-Factor Analysis of the variance, and visually by the response "surfaces technique. Pressure distribution has been measured in a model of a large diameter packed bed, and shown to be associated with the velocity of the gas in a tangential feed pipe. Two simplified theoretical models are proposed to describe the flow of gases through packed beds and to support the principle of dynamic similarity. These models explain why the packed bed itself causes the flow of gas to become more uniformly distributed. A 1.2m. diameter scaled-down model was constructed geometrically similar to a 7.3m. diameter vacuum crude distillation column. The previously known internal cylinder gas distributor was tested. Three new distributors suitable for use in a large diameter column were developed and tested, these are: Internal Cylinder with Slots and Cross Baffles, Internal Cylinder with Guides in the Annulus, Internal Cylinder with Internal Cross Baffles - It has been shown that this is an excellent distributor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Packed beds have many industrial applications and are increasingly used in the process industries due to their low pressure drop. With the introduction of more efficient packings, novel packing materials (i.e. adsorbents) and new applications (i.e. flue gas desulphurisation); the aspect ratio (height to diameter) of such beds is decreasing. Obtaining uniform gas distribution in such beds is of crucial importance in minimising operating costs and optimising plant performance. Since to some extent a packed bed acts as its own distributor the importance of obtaining uniform gas distribution has increased as aspect ratios (bed height to diameter) decrease. There is no rigorous design method for distributors due to a limited understanding of the fluid flow phenomena and in particular of the effect of the bed base / free fluid interface. This study is based on a combined theoretical and modelling approach. The starting point is the Ergun Equation which is used to determine the pressure drop over a bed where the flow is uni-directional. This equation has been applied in a vectorial form so it can be applied to maldistributed and multi-directional flows and has been realised in the Computational Fluid Dynamics code PHOENICS. The use of this equation and its application has been verified by modelling experimental measurements of maldistributed gas flows, where there is no free fluid / bed base interface. A novel, two-dimensional experiment has been designed to investigate the fluid mechanics of maldistributed gas flows in shallow packed beds. The flow through the outlet of the duct below the bed can be controlled, permitting a rigorous investigation. The results from this apparatus provide useful insights into the fluid mechanics of flow in and around a shallow packed bed and show the critical effect of the bed base. The PHOENICS/vectorial Ergun Equation model has been adapted to model this situation. The model has been improved by the inclusion of spatial voidage variations in the bed and the prescription of a novel bed base boundary condition. This boundary condition is based on the logarithmic law for velocities near walls without restricting the velocity at the bed base to zero and is applied within a turbulence model. The flow in a curved bed section, which is three-dimensional in nature, is examined experimentally. The effect of the walls and the changes in gas direction on the gas flow are shown to be particularly significant. As before, the relative amounts of gas flowing through the bed and duct outlet can be controlled. The model and improved understanding of the underlying physical phenomena form the basis for the development of new distributors and rigorous design methods for them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The total thermoplastics pipe market in west Europe is estimated at 900,000 metric tonnes for 1977 and is projected to grow to some 1.3 million tonnes of predominantly PVC and polyolefins pipe by 1985. By that time, polyethylene for gas distribution pipe and fittings will represent some 30% of the total polyethylene pipe market. The performance characteristics of a high density polyethylene are significantly influenced by both molecular weight and type of comonomer; the major influences being in the long-term hoop stress resistance and the environmental stress cracking resistance. Minor amounts of hexene-1 are more effective than comonomers lower in the homologous series, although there is some sacrifice of density related properties. A synergistic improvement is obtained by combining molecular weight increase with copolymerisation. The Long-term design strength of polyethylene copolymers can be determined from hoop stress measurement at elevated temperatures and by means of a separation factor of approximate value 22, extrapolation can be made to room temperature performance for a water environment. A polyethylene of black composition has a sufficiently improved performance over yellow pigmented pipe to cast doubts on the validity of internationally specifying yellow coded pipe for gas distribution service. The chemical environment (condensate formation) that can exist in natural gas distribution networks has a deleterious effect on the pipe performance the reduction amounting to at least two decades in log time. Desorption of such condensate is very slow and the influence of the more aggressive aromatic components is to lead to premature stress cracking. For natural gas distribution purposes, the design stress rating should be 39 Kg/cm2 for polyethylenes in the molecular weight range of 150 - 200,000 and 55 Kg/cm2 for higher molecular weight materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT) in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium) or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air). The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Includes index.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Colombia está dando pasos importantes para ubicarse en cada uno de los frentes energéticos, el sector de gas natural en Colombia ha experimentado un alto crecimiento de la demanda, acompañado de la introducción y profundización de un marco de mercado. Las compañías que hacen parte de este sector utilizan el marketing relacional, como consecuencia de los cambios producidos en la estructura y competencia de la industria; no obstante, esto exige a las empresas una orientación al mercado con énfasis en la implementación de acciones de marketing proactivas, ya que en el mediano y largo plazo sólo serán rentables las compañías que mejor satisfagan las necesidades y exigencias de los consumidores. Estas empresas tienen un concepto de clientes o consumidores como objetivó final, pero no de un concepto de comunidad. Las estrategias comunitarias es un conocimiento nuevo, que es importante divulgar para aquellas empresas de servicios, que además de incluir estrategias de marketing relacional, y proclamar una responsabilidad social, deben incluir el concepto comunidad en la misión estratégica de la empresa. Así bien, se pretendió identificar mediante un estudio de tipo empírico-analítico si existía un concepto de comunidad, así como si se utilizaban estrategias comunitarias en la relación de la organización Gas Natural Fenosa con las comunidades a las que prestan el servicio. Gas Natural Fenosa en Colombia opera como distribuidor y comercializador de gas y electricidad, la Compañía provee gas natural a hogares, industria, comercio y vehículos. Se evidenció que el concepto comunidad sí se incluye en la estrategia de la empresa, ya que más que una estrategia de marketing transaccional, relacional, o una responsabilidad social se realizan actividades en pro del desarrollo y el empoderamiento de la sociedad, actividades culturales, de educación y donaciones, que son trascendentales a la hora de hablar del crecimiento de las comunidades, se hace uso de una estrategia comunitaria o marketing social ya que Gas Natural Fenosa con estas actividades genera recordación, publicidad y capacitación a los clientes y proveedores lo que disminuye las quejas y reclamaciones, etc.. y que a la vez vincula la empresa y la marca con una causa social de interés, en una relación de beneficio mutuo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Until August 2004 there were 106 forensic cases examined with postmortem multislice computed tomography (MSCT) and magnetic resonance (MR) imaging before traditional autopsy within the Virtopsy project. Intrahepatic gas (IHG) was a frequent finding in postmortem MSCT examinations. The aim of this study was to investigate its cause and significance. METHODS: There were 84 virtopsy cases retrospectively investigated concerning the occurrence, location, and volume of IHG in postmortem MSCT imaging (1.25 mm collimation, 1.25 mm thickness). We assessed and noted the occurrence of intestinal distention, putrefaction, and systemic gas embolisms and the cause of death, possible open trauma, possible artificial respiration, and the postmortem interval. We investigated the relations between the findings using the contingency table (chi2 test) and the comparison of the postmortem intervals in both groups was performed using the t test in 79 nonputrefied corpses. RESULTS: IHG was found in 47 cases (59.5%). In five of the cases, the IHG was caused or influenced by putrefaction. Gas distribution within the liver of the remaining 42 cases was as follows: hepatic arteries in 21 cases, hepatic veins in 35 cases, and portal vein branches in 13 cases; among which combinations also occurred in 20 cases. The presence of IHG was strongly related to open trauma with systemic gas. Pulmonary barotrauma as occurring under artificial respiration or in drowning also caused IHG. Putrefaction did not seem to influence the occurrence of IHG until macroscopic signs of putrefaction were noticeable. CONCLUSIONS: IHG is a frequent finding in traumatic causes of death and requires a systemic gas embolism. Exceptions are putrefied or burned corpses. Common clinical causes such as necrotic bowel diseases appear rarely as a cause of IHG in our forensic case material.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ground penetrating radar (GPR) was used to determine peat basin geometry and the spatial distribution of free-phase biogenic gasses in two separate units of a northern peatland (Central and Southern Unit of Caribou Bog, Maine). The Central Unit is characterized by a deep basin structure (15 m maximum depth) and a raised (eccentric) bog topographic profile (up to 2 m topographic variation). Here numerous regions of electromagnetic (EM) wave scattering are considered diagnostic of the presence of extensive free-phase biogenic gas. In contrast, the Southern Unit is shallower (8 m maximum depth) and has a slightly convex upwards bog profile (less than 1 m topographic variation), and areas of EM wave scattering are notably absent. The biogenic gas zones interpreted from GPR in the Central Unit are associated with: (1) wooded heath vegetation at the surface, (2) open pools at the surface, (3) high water table elevations near the center of the basin, and (4) a region of overpressure (at approximately 5 m depth) immediately below the zone of free-phase gas accumulation. The latter suggests (1) a transient pressure head associated with low hydraulic conductivity resulting from the biogenic gasses themselves or confining layers in the peat that restrict both gas release and groundwater flow and/or (2) overpressure in the peat column as a result of the gas buildup itself. In contrast, the Southern Unit, where zones of EM scattering are absent, is characterized by: (1) predominantly shrub vegetation, (2) a lack of open pools, (3) only minor variations (less than 1 m) in water table elevation throughout the entire unit; and (4) generally upward groundwater flow throughout the basin. The results illustrate the nonuniformity of free-phase biogenic gas distribution at the peat basin scale and provide insights into the processes and controls associated with CH4 and CO2 accumulation in peatlands.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The blast furnace is the main ironmaking production unit in the world which converts iron ore with coke and hot blast into liquid iron, hot metal, which is used for steelmaking. The furnace acts as a counter-current reactor charged with layers of raw material of very different gas permeability. The arrangement of these layers, or burden distribution, is the most important factor influencing the gas flow conditions inside the furnace, which dictate the efficiency of the heat transfer and reduction processes. For proper control the furnace operators should know the overall conditions in the furnace and be able to predict how control actions affect the state of the furnace. However, due to high temperatures and pressure, hostile atmosphere and mechanical wear it is very difficult to measure internal variables. Instead, the operators have to rely extensively on measurements obtained at the boundaries of the furnace and make their decisions on the basis of heuristic rules and results from mathematical models. It is particularly difficult to understand the distribution of the burden materials because of the complex behavior of the particulate materials during charging. The aim of this doctoral thesis is to clarify some aspects of burden distribution and to develop tools that can aid the decision-making process in the control of the burden and gas distribution in the blast furnace. A relatively simple mathematical model was created for simulation of the distribution of the burden material with a bell-less top charging system. The model developed is fast and it can therefore be used by the operators to gain understanding of the formation of layers for different charging programs. The results were verified by findings from charging experiments using a small-scale charging rig at the laboratory. A basic gas flow model was developed which utilized the results of the burden distribution model to estimate the gas permeability of the upper part of the blast furnace. This combined formulation for gas and burden distribution made it possible to implement a search for the best combination of charging parameters to achieve a target gas temperature distribution. As this mathematical task is discontinuous and non-differentiable, a genetic algorithm was applied to solve the optimization problem. It was demonstrated that the method was able to evolve optimal charging programs that fulfilled the target conditions. Even though the burden distribution model provides information about the layer structure, it neglects some effects which influence the results, such as mixed layer formation and coke collapse. A more accurate numerical method for studying particle mechanics, the Discrete Element Method (DEM), was used to study some aspects of the charging process more closely. Model charging programs were simulated using DEM and compared with the results from small-scale experiments. The mixed layer was defined and the voidage of mixed layers was estimated. The mixed layer was found to have about 12% less voidage than layers of the individual burden components. Finally, a model for predicting the extent of coke collapse when heavier pellets are charged over a layer of lighter coke particles was formulated based on slope stability theory, and was used to update the coke layer distribution after charging in the mathematical model. In designing this revision, results from DEM simulations and charging experiments for some charging programs were used. The findings from the coke collapse analysis can be used to design charging programs with more stable coke layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a physical mechanism to explain the origin of the intense burst of massive-star formation seen in colliding/merging, gas-rich, field spiral galaxies. We explicitly take account of the different parameters for the two main mass components, H-2 and H I, of the interstellar medium within a galaxy and follow their consequent different evolution during a collision between two galaxies. We also note that, in a typical spiral galaxy-like our galaxy, the Giant Molecular Clouds (GMCs) are in a near-virial equilibrium and form the current sites of massive-star formation, but have a low star formation rate. We show that this star formation rate is increased following a collision between galaxies. During a typical collision between two field spiral galaxies, the H I clouds from the two galaxies undergo collisions at a relative velocity of approximately 300 km s-1. However, the GMCs, with their smaller volume filling factor, do not collide. The collisions among the H I clouds from the two galaxies lead to the formation of a hot, ionized, high-pressure remnant gas. The over-pressure due to this hot gas causes a radiative shock compression of the outer layers of a preexisting GMC in the overlapping wedge region. This makes these layers gravitationally unstable, thus triggering a burst of massive-star formation in the initially barely stable GMCs.The resulting value of the typical IR luminosity from the young, massive stars from a pair of colliding galaxies is estimated to be approximately 2 x 10(11) L., in agreement with the observed values. In our model, the massive-star formation occurs in situ in the overlapping regions of a pair of colliding galaxies. We can thus explain the origin of enhanced star formation over an extended, central area approximately several kiloparsecs in size, as seen in typical colliding galaxies, and also the origin of starbursts in extranuclear regions of disk overlap as seen in Arp 299 (NGC 3690/IC 694) and in Arp 244 (NGC 4038/39). Whether the IR emission from the central region or that from the surrounding extranuclear galactic disk dominates depends on the geometry and the epoch of the collision and on the initial radial gas distribution in the two galaxies. In general, the central starburst would be stronger than that in the disks, due to the higher preexisting gas densities in the central region. The burst of star formation is expected to last over a galactic gas disk crossing time approximately 4 x 10(7) yr. We can also explain the simultaneous existence of nearly normal CO galaxy luminosities and shocked H-2 gas, as seen in colliding field galaxies.This is a minimal model, in that the only necessary condition for it to work is that there should be a sufficient overlap between the spatial gas distributions of the colliding galaxy pair.