951 resultados para Gas Hold-Up
Resumo:
Time dependent gas hold-up generated in the 0.3 and 0.6 m diameter vessels using high viscosity castor oil and carboxy methyl cellulose (CMC) solution was compared on the basis of impeller speed (N) and gas velocity (V-G). Two types of hold-up were distinguished-the hold-up due to tiny bubbles (epsilon(ft)) and total hold-up (epsilon(f)), which included large and tiny bubbles. It was noted that vessel diameter (i.e. the scale of operation) significantly influences (i) the trends and the values of epsilon(f) and epsilon(ft), and (ii) the values of tau (a constant reflecting the time dependency of hold-up). The results showed that a scale independent correlation for gas hold-up of the form epsilon(f) or epsilon(ft) = A(N or P-G/V)(a) (V-G)(b), where "a" and "b" are positive constants is not appropriate for viscous liquids. This warrants further investigations into the effect of vessel diameter on gas hold-up in impeller agitated high viscosity liquids (mu or mu(a) > 0.4 Pa s). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper presents and interprets results of experimental measurements of the spatial gas hold-up distribution in a 3 (3) glass rectangular flotation cell at the JKMRC using two different techniques. The gas hold-up device with the capturing technique was developed at the JKMRC and has been used widely in the P9 project(1) while the one with conductivity technique was developed at the CSIRO Thermal and Fluids Engineering laboratory at Highett, Victoria, Australia. Measurements were conducted at more than 64 locations in the cell to determine the local gas hold-up distribution in the cell. Since the measurements using the two techniques were conducted at the same locations, the results may be compared with each other. The results indicate that the gas hold-up varies widely inside the flotation cell. The gas hold-up distributions measured by the two techniques are relatively similar except in some locations which can be reasonably explained. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This note presents a simple model for prediction of liquid hold-up in two-phase horizontal pipe flow for the stratified roll wave (St+RW) flow regime. Liquid hold-up data for horizontal two-phase pipe flow [1, 2, 3, 4, 5 and 6] exhibit a steady increase with liquid velocity and a more dramatic fall with increasing gas rate as shown by Hand et al. [7 and 8] for example. In addition the liquid hold-up is reported to show an additional variation with pipe diameter. Generally, if the initial liquid rate for the no-gas flow condition gives a liquid height below the pipe centre line, the flow patterns pass successively through the stratified (St), stratified ripple (St+R), stratified roll wave, film plus droplet (F+D) and finally the annular (A+D, A+RW, A+BTS) regimes as the gas rate is increased. Hand et al. [7 and 8] have given a detailed description of this progression in flow regime development and definitions of the patterns involved. Despite the fact that there are over one hundred models which have been developed to predict liquid hold-up, none have been shown to be universally useful, while only a handful have proven to be applicable to specific flow regimes [9, 10, 11 and 12]. One of the most intractable regimes to predict has been the stratified roll wave pattern where the liquid hold-up shows the most dramatic change with gas flow rate. It has been suggested that the momentum balance-type models, which give both hold-up and pressure drop prediction, can predict universally for all flow regimes but particularly in the case of the difficult stratified roll wave pattern. Donnelly [1] recently demonstrated that the momentum balance models experienced some difficulties in the prediction of this regime. Without going into lengthy details, these models differ in the assumed friction factor or shear stress on the surfaces within the pipe particularly at the liquid–gas interface. The Baker–Jardine model [13] when tested against the 0.0454 m i.d. data of Nguyen [2] exhibited a wide scatter for both liquid hold-up and pressure drop as shown in Fig. 1. The Andritsos–Hanratty model [14] gave better prediction of pressure drop but a wide scatter for liquid hold-up estimation (cf. Fig. 2) when tested against the 0.0935 m i.d. data of Hand [5]. The Spedding–Hand model [15], shown in Fig. 3 against the data of Hand [5], gave improved performance but was still unsatisfactory with the prediction of hold-up for stratified-type flows. The MARS model of Grolman [6] gave better prediction of hold-up (cf. Fig. 4) but deterioration in the estimation of pressure drop when tested against the data of Nguyen [2]. Thus no method is available that will accurately predict liquid hold-up across the whole range of flow patterns but particularly for the stratified plus roll wavy regime. The position is particularly unfortunate since the stratified-type regimes are perhaps the most predominant pattern found in multiphase lines.
Resumo:
This article offers a replication for Britain of Brown and Heywood's analysis of the determinants of performance appraisal in Australia. Although there are some important limiting differences between our two datasets - the Australia Workplace Industrial Relations Survey (AWIRS) and the Workplace Employment Relations Survey (WERS) - we reach one central point of agreement and one intriguing shared insight. First, performance appraisal is negatively associated with tenure: where employers cannot rely on the carrot of deferred pay or the stick of dismissal to motivate workers, they will tend to rely more on monitoring, ceteris paribus. Second, employer monitoring and performance pay may be complementary. However, consonant with the disparate results from the wider literature, there is more modest agreement on the contribution of specific human resource management practices, and still less on the role of job control.
Resumo:
El Capitán Daylight es un simpático asaltante de caminos, al que le gusta más gastar bromas a la gente que robar. Pero un día, decide que quiere cambiar su imagen y para ello se disfraza como el osado atracador de diligencias, Black Jack Midnight. Sin embargo, su carácter bonachón y su torpeza no han cambiado con el nuevo ropaje.
Resumo:
O presente estudo apresenta o problema de hold up que aparece em situações de contratos incompletos e investimentos específicos onde um dos agentes de um contrato pode não estar disposto a investir no ativo específico por temer um futuro prejuízo. São apresentados dois projetos de investimento de infra-estrutura no setor ferroviário brasileiro, passíveis de hold up e tem-se como objetivo mostrar que as parcerias público-privadas podem ser arranjos contratuais eficientes e que resultem no investimento ótimo.
Resumo:
"April 1975."