915 resultados para Gap junction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Gap junction intercellular communication (GJIC) is considered to play a role in the regulation of homeostasis because it regulates important processes, such as cell proliferation and cell differentiation. A reduced or lost GJIC capacity has been observed in solid tumors and studies have demonstrated that GJIC restoration in tumor cells contribute to reversion of the transformed phenotype. This observation supports the idea that restoration of the functional channel is essential in this process. However, in the last years, reports have proposed that just the increase in the expression of specific connexins can contribute to reversion of the malign phenotype in some tumor cells. In the present work, we studied the effects of exogenous Connexin 43 (Cx43) expression on the proliferative behavior and phenotype of rat hepatocarcinoma cells. Results: The exogenous Cx43 did not increase GJIC capacity of transfected cells, but it was critical to decrease the cell proliferation rate as well as reorganization of the actin filaments and cell flattening. We also observed more adhesion capacity to substrate after Cx43 transfection. Conclusion: Cx43 expression leads to a decrease of the growth of the rat hepatocellular carcinoma cells and it contributes to the reversion of the transformed phenotype. These effects were independent of the GJIC and were probably associated with the phosphorylation pattern changes and redistribution of the Cx43 protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intercellular communication is achieved at specialized regions of the plasma membrane by¦gap junctions. Gap junctions are transmembrane channels allowing direct contacts between¦the cytoplasms of neighboring cells. Each cell participates with one hemichannel, or¦connexon, made of six protein subunits named connexins. Thanks to these junctions, cells¦potentially share a pool of small molecules and metabolites, such as nucleotides, amino acids¦and second messengers.¦In an ischemic (i.e. non-perfused) territory of the brain, irreversible damage progresses over¦time from the centre of the most severe flow reduction to the periphery with less disturbed¦perfusion. Functionally impaired tissue can survive and recover if sufficient reperfusion is reestablished¦within a limited time period, which depends on various factors and mechanisms¦modulating the signaling pathways leading to cell death.¦Observations were made indicating the presence of electrical coupling between neurons which¦resist better to an ischemic insult. This electrical coupling is likely to be mediated by¦Connexin36 (Cx36), a neuron specific connexin isoform. It was demonstrated in the past that¦global ischemia induces a selective upregulation of Cx36 expression in regions with neurons¦that survive the insult whereas others undergo apoptosis and die. These observations raise the¦possibility that the neuronal gap junction Cx36 might play a role in the destiny of neurons¦after cerebral ischemia.¦The aim of this work was to characterize the regulation of Connexin36 in a mouse model of¦transient focal cerebral ischemia by immunofluorescence and Western blot analysis. Our¦immunofluorescence results suggest a specific increase in Cx36 in the penumbral region of¦the ischemic hemisphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gap junction connexin-43 (Cx43) molecules are responsible for electrical impulse conduction in the heart and are affected by transforming growth factor-β (TGF-β). This cytokine increases during Trypanosoma cruzi infection, modulating fibrosis and the parasite cell cycle. We studied Cx43 expression in cardiomyocytes exposed or not to TGF-β T. cruzi, or SB-431542, an inhibitor of TGF-β receptor type I (ALK-5). Cx43 expression was also examined in hearts with dilated cardiopathy from chronic Chagas disease patients, in which TGF-β signalling had been shown previously to be highly activated. We demonstrated that TGF-β treatment induced disorganised gap junctions in non-infected cardiomyocytes, leading to a punctate, diffuse and non-uniform Cx43 staining. A similar pattern was detected in T. cruzi-infected cardiomyocytes concomitant with high TGF-β secretion. Both results were reversed if the cells were incubated with SB-431542. Similar tests were performed using human chronic chagasic patients and we confirmed a down-regulation of Cx43 expression, an altered distribution of plaques in the heart and a significant reduction in the number and length of Cx43 plaques, which correlated negatively with cardiomegaly. We conclude that elevated TGF-β levels during T. cruzi infection promote heart fibrosis and disorganise gap junctions, possibly contributing to abnormal impulse conduction and arrhythmia that characterise severe cardiopathy in Chagas disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical and mechanical coupling of myocytes in heart and of smooth muscle cells in the aortic wall is thought to be mediated by intercellular channels aggregated at gap junctions. Connexin43 (Cx43) is one of the predominant membrane proteins forming junctional channels in the cardiovascular system. This study was undertaken to assess its expression during experimental hypertension. Rats were made hypertensive by clipping one renal artery (two-kidney, one-clip renal hypertension) or by administering deoxycorticosterone and salt (DOCA-salt hypertension). After four weeks, rats from both models showed a similar increase in intra-arterial mean blood pressure, as well as in the thickness of both aorta and heart walls. Northern blot analysis showed that, compared to controls, hypertensive rats expressed twice more Cx43 in aorta, but not in heart. These results suggest that localized mechanical forces induced by hypertension are major tissue-specific regulators of Cx43 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Cells in tissues and organs coordinate their activities by communicating with each other through intercellular channels named gap junctions. These channels are conduits between the cytoplasmic compartments of adjacent cells, allowing the exchange of small molecules which may be crucial for hormone secretion. Renin is normally secreted in a regulated manner by specific cells of the juxtaglomerular apparatus located within the renal cortex. Gap junctional communication may be requisite to maintain an accurate functioning in coordination of renin-producing cells, more especially as renin is of paramount importance for the control of blood pressure. Connexin43 (Cx43) and Cx40 form gap junctions that link in vivo the cells of the juxtaglomerular apparatus. Cx43 links the endothelial cells, whereas gap junctions made of Cx40 connect the endothelial cells, the renin secreting cells, as well as the endothelial cells of to the renin-secreting cells of the afferent arteriole. The observation that loss of Cx40 results in chronic hypertension associated with altered vasomotion and signal conduction along arterioles, has lead us to suggest that connexins may contribute to control blood pressure by participating to the integration of various mechanical, osmotic and electrochemical stimuli involved in the control of renin secretion and by mediating the adaptive changes of the vascular wall induced by elevated blood pressure and mechanical stress. We therefore postulated that the absence of Cx40 could have deleterious effects on the coordinated functioning of the renin-containing cells, hence accounting for hypertension. In the first part of my thesis, we reported that Cx40-deficient mice (Cx40) are hypertensive due to increased plasma renin levels and numbers of renin-producing cells. Besides, we demonstrated that prostaglandins and nitric oxide, which are possible mediators in the regulation of renin secretion by the macula densa, exert a critical role in the mechanisms controlling blood pressure ín Cx40 knockout hypertensive mice. In view of previous studies that stated avessel-specifc increase in the expression of Cx43 during renin-dependent hypertension, we hypothesized that Cx43 channels are particularly well-matched to integrate the response of cells constituting the vascular wall to hypertensive conditions. Using transgenic mice in which Cx43 was replaced by Cx32, we revealed that the replacement of Cx43 by Cx32 is associated with decreased expression and secretion of renin and prevent the renin-dependent hypertension which is normally induced in the 2K1C model. To gain insights into the regulation of connexins in two separate tissues exposed to the same fluid pressure, the second part of my thesis work was dedicated to the study of the impact of chronic hypertension and related hypertrophy on the expression of the cardiovascular connexins (Cx40, Cx37, Cx43 and Cx45) in mouse aorta and heart. Our results documented that the expression of connexins is differentially regulated in mouse aorta. according to the models of hypertension. Thus, blood pressure induces mechanical forces that differentially alter the expression of vascular connexins in order to respond to an adaptation of the aortic wall observed under pathological conditions. Altogether these data provide the first evidences that intercellular communication mediated by gap junctions is required for a proper renin secretion from the juxtaglomerular apparatus in order to control blood pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most cells exchange ions and small metabolites via gap junction channels. These channels are made of two hemichannels (connexons), each formed by the radial arrangement of six connexin (Cx) proteins. Connexins span the bilayer four times (M1-M4) and have both amino- and carboxy-termini (NT, CT) at the cytoplasmic side of the membrane, forming two extracellular loops (E1, E2) and one inner (IL) loop. The channels are regulated by gates that close with cytosolic acidification (e.g., CO2 treatment) or increased calcium concentration, possibly via calmodulin activation. Although gap junction regulation is still unclear, connexin domains involved in gating are being defined. We have recently focused on the CO2 gating sensitivity of Cx32, Cx38 and various mutants and chimeras expressed in Xenopus oocytes and studied by double voltage clamp. Cx32 is weakly sensitive to CO2, whereas Cx38 is highly sensitive. A Cx32 chimera containing the second half of the inner loop (IL2) of Cx38 was as sensitive to CO2 as Cx38, indicating that this domain plays an important role. Deletion of CT by 84% did not affect CO2 sensitivity, but replacement of 5 arginines (R) with sparagines (N) at the beginning of CT (C1) greatly enhanced the CO2 sensitivity of Cx32. This suggests that whereas most of CT is irrelevant, positive charges of C1 maintain the CO2 sensitivity of Cx32 low. As a hypothesis we have proposed a model that involves charge interaction between negative residues of the beginning of IL1 and positive residues of either C1 or IL2. Open and closed channels would result from IL1-C1 and IL1-IL2 interactions, respectively

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC) can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal gap junctions are receiving increasing attention as a physiological means of intercellular communication, yet our understanding of them is poorly developed when compared to synaptic communication. Using microfluorimetry, we demonstrate that differentiation of SN56 cells (hybridoma cells derived from murine septal neurones) leads to the spontaneous generation of Ca(2+) waves. These waves were unaffected by tetrodotoxin (1microM), but blocked by removal of extracellular Ca(2+), or addition of non-specific Ca(2+) channel inhibitors (Cd(2+) (0.1mM) or Ni(2+) (1mM)). Combined application of antagonists of NMDA receptors (AP5; 100microM), AMPA/kainate receptors (NBQX; 20microM), nicotinic AChR receptors (hexamethonium; 100microM) or inotropic purinoceptors (brilliant blue; 100nM) was also without effect. However, Ca(2+) waves were fully prevented by carbenoxolone (200microM), halothane (3mM) or niflumic acid (100microM), three structurally diverse inhibitors of gap junctions, and mRNA for connexin 36 was detected by PCR. Whole-cell patch-clamp recordings revealed spontaneous inward currents in voltage-clamped cells which we inhibited by Cd(2+), Ni(2+) or niflumic acid. Our data suggest that differentiated SN56 cells generated spontaneous Ca(2+) waves which are propagated by intercellular gap junctions. We propose that this system can be exploited conveniently for the development of neuronal gap junction modulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In a previous study utilizing the rat model, exposure to tobacco smoke for 5 weeks increased survival after AMI, despite similar age and infarct size between the smokers and nonsmokers, and absence of reperfusion. Objective: Thus, this study aimed to analyze the effects of exposure to tobacco smoke on intensity, distribution or phosphorylation of connexin 43 in the rat heart. Methods: Wistar rats weighing 100 g were randomly allocated into 2 groups: 1) Control (n = 25); 2) Exposed to tobacco smoke (ETS), n = 23. After 5 weeks, left ventricular morphometric analysis, immunohisthochemistry and western blotting for connexin 43 (Cx43) were performed. Results: Collagen volume fraction, cross-sectional areas, and ventricular weight were not statistically different between control and ETS. ETS showed lower stain intensity of Cx43 at intercalated disks (Control: 2.32 ± 0.19; ETS: 1.73 ± 0.18; p = 0.04). The distribution of CX43 at intercalated disks did not differ between the groups (Control: 3.73 ± 0.12; ETS: 3.20 ± 0.17; p = 0.18). ETS rats showed higher levels of dephosphorylated form of Cx43 (Control: 0.45 ± 0.11; ETS: 0.90 ± 0.11; p = 0.03). On the other hand, total Cx43 did not differ between control and ETS groups (Control: 0.75 ± 0.19; ETS: 0.93 ± 0.27; p = 0.58). Conclusion: Exposure to tobacco smoke resulted in cardiac gap junction remodeling, characterized by alterations in the quantity and phosphorylation of the Cx43, in rats hearts. This finding could explain the smoker's paradox observed in some studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) V j-sensitive gating of I j (V j, gap junction voltage; I j, gap junction current), (2) contribution and (3) kinetics of I j deactivation and (4) single-channel conductance. The first three reflect alterations of fast V j gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties.