181 resultados para Galois Cohomology


Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12F12, 15A66.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this article is to describe certain results and conjectures concerning the structure of Galois cohomology groups and Selmer groups, especially for abelian varieties. These results are analogues of a classical theorem of Iwasawa. We formulate a very general version of the Weak Leopoldt Conjecture. One consequence of this conjecture is the nonexistence of proper Λ-submodules of finite index in a certain Galois cohomology group. Under certain hypotheses, one can prove the nonexistence of proper Λ-submodules of finite index in Selmer groups. An example shows that some hypotheses are needed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss the relationship among certain generalizations of results of Hida, Ribet, and Wiles on congruences between modular forms. Hida’s result accounts for congruences in terms of the value of an L-function, and Ribet’s result is related to the behavior of the period that appears there. Wiles’ theory leads to a class number formula relating the value of the L-function to the size of a Galois cohomology group. The behavior of the period is used to deduce that a formula at “nonminimal level” is obtained from one at “minimal level” by dropping Euler factors from the L-function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corepresentations of a coalgebra over a quadratic operad are defined, and various characterizations of them are given. Cohomology of such an operadic coalgebra with coefficients in a corepresentation is then studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we review classical and modern Galois theory with historical evolution and prove a criterion of Galois for solvability of an irreducible separable polynomial of prime degree over an arbitrary field k and give many illustrative examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies Frobenius traces in Galois representations from two different directions. In the first problem we explore how often they vanish in Artin-type representations. We give an upper bound for the density of the set of vanishing Frobenius traces in terms of the multiplicities of the irreducible components of the adjoint representation. Towards that, we construct an infinite family of representations of finite groups with an irreducible adjoint action.

In the second problem we partially extend for Hilbert modular forms a result of Coleman and Edixhoven that the Hecke eigenvalues ap of classical elliptical modular newforms f of weight 2 are never extremal, i.e., ap is strictly less than 2[square root]p. The generalization currently applies only to prime ideals p of degree one, though we expect it to hold for p of any odd degree. However, an even degree prime can be extremal for f. We prove our result in each of the following instances: when one can move to a Shimura curve defined by a quaternion algebra, when f is a CM form, when the crystalline Frobenius is semi-simple, and when the strong Tate conjecture holds for a product of two Hilbert modular surfaces (or quaternionic Shimura surfaces) over a finite field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lovelock terms are polynomial scalar densities in the Riemann curvature tensor that have the remarkable property that their Euler-Lagrange derivatives contain derivatives of the metric of an order not higher than 2 (while generic polynomial scalar densities lead to Euler-Lagrange derivatives with derivatives of the metric of order 4). A characteristic feature of Lovelock terms is that their first nonvanishing term in the expansion g λμ = η λμ + h λμ of the metric around flat space is a total derivative. In this paper, we investigate generalized Lovelock terms defined as polynomial scalar densities in the Riemann curvature tensor and its covariant derivatives (of arbitrarily high but finite order) such that their first nonvanishing term in the expansion of the metric around flat space is a total derivative. This is done by reformulating the problem as a BRST cohomological one and by using cohomological tools. We determine all the generalized Lovelock terms. We find, in fact, that the class of nontrivial generalized Lovelock terms contains only the usual ones. Allowing covariant derivatives of the Riemann tensor does not lead to a new structure. Our work provides a novel algebraic understanding of the Lovelock terms in the context of BRST cohomology. © 2005 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the paper we give an exposition of the major results concerning the relation between first order cohomology of Banach algebras of operators on a Banach space with coefficients in specified modules and the geometry of the underlying Banach space. In particular we shall compare the properties weak amenability and amenability for Banach algebras A(X), the approximable operators on a Banach space X. Whereas amenability is a local property of the Banach space X, weak amenability is often the consequence of properties of large scale geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the simplicial cohomology of certain Banach operator algebras. The two main examples considered are the Banach algebra of all bounded operators on a Banach space and its ideal of approximable operators. Sufficient conditions will be given forcing Banach algebras of this kind to be simplicially trivial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider non-standard totalisation functors for double complexes, involving left or right truncated products. We show how properties of these imply that the algebraic mapping torus of a self map h of a cochain complex of finitely presented modules has trivial negative Novikov cohomology, and has trivial positive Novikov cohomology provided h is a quasi-isomorphism. As an application we obtain a new and transparent proof that a finitely dominated cochain complex over a Laurent polynomial ring has trivial (positive and negative) Novikov cohomology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estabelecemos uma condição suficiente para a preservação dos produtos finitos, pelo reflector de uma variedade de álgebras universais numa subvariedade, que é, também, condição necessária se a subvariedade for idempotente. Esta condição é estabelecida, seguidamente, num contexto mais geral e caracteriza reflexões para as quais a propriedade de ser semi-exacta à esquerda e a propriedade, mais forte, de ter unidades estáveis, coincidem. Prova-se que reflexões simples e semi-exactas à esquerda coincidem, no contexto das variedades de álgebras universais e caracterizam-se as classes do sistema de factorização derivado da reflexão. Estabelecem-se resultados que ajudam a caracterizar morfismos de cobertura e verticais-estáveis em álgebras universais e no contexto mais geral já referido. Caracterizam-se as classes de morfismos separáveis, puramente inseparáveis e normais. O estudo dos morfismos de descida de Galois conduz a condições suficientes para que o seu par kernel seja preservado pelo reflector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce mémoire, on étudie les extensions galoisiennes finies de C(x). On y démontre le théorème d'existence de Riemann. Les notions de rigidité faible, rigidité et rationalité y sont développées. On y obtient le critère de rigidité qui permet de réaliser certains groupes comme groupes de Galois sur Q. Plusieurs exemples de types de ramification sont construis.