99 resultados para Galois


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we review classical and modern Galois theory with historical evolution and prove a criterion of Galois for solvability of an irreducible separable polynomial of prime degree over an arbitrary field k and give many illustrative examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies Frobenius traces in Galois representations from two different directions. In the first problem we explore how often they vanish in Artin-type representations. We give an upper bound for the density of the set of vanishing Frobenius traces in terms of the multiplicities of the irreducible components of the adjoint representation. Towards that, we construct an infinite family of representations of finite groups with an irreducible adjoint action.

In the second problem we partially extend for Hilbert modular forms a result of Coleman and Edixhoven that the Hecke eigenvalues ap of classical elliptical modular newforms f of weight 2 are never extremal, i.e., ap is strictly less than 2[square root]p. The generalization currently applies only to prime ideals p of degree one, though we expect it to hold for p of any odd degree. However, an even degree prime can be extremal for f. We prove our result in each of the following instances: when one can move to a Shimura curve defined by a quaternion algebra, when f is a CM form, when the crystalline Frobenius is semi-simple, and when the strong Tate conjecture holds for a product of two Hilbert modular surfaces (or quaternionic Shimura surfaces) over a finite field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estabelecemos uma condição suficiente para a preservação dos produtos finitos, pelo reflector de uma variedade de álgebras universais numa subvariedade, que é, também, condição necessária se a subvariedade for idempotente. Esta condição é estabelecida, seguidamente, num contexto mais geral e caracteriza reflexões para as quais a propriedade de ser semi-exacta à esquerda e a propriedade, mais forte, de ter unidades estáveis, coincidem. Prova-se que reflexões simples e semi-exactas à esquerda coincidem, no contexto das variedades de álgebras universais e caracterizam-se as classes do sistema de factorização derivado da reflexão. Estabelecem-se resultados que ajudam a caracterizar morfismos de cobertura e verticais-estáveis em álgebras universais e no contexto mais geral já referido. Caracterizam-se as classes de morfismos separáveis, puramente inseparáveis e normais. O estudo dos morfismos de descida de Galois conduz a condições suficientes para que o seu par kernel seja preservado pelo reflector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce mémoire, on étudie les extensions galoisiennes finies de C(x). On y démontre le théorème d'existence de Riemann. Les notions de rigidité faible, rigidité et rationalité y sont développées. On y obtient le critère de rigidité qui permet de réaliser certains groupes comme groupes de Galois sur Q. Plusieurs exemples de types de ramification sont construis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new class of noncommutative rings - Galois orders, realized as certain subrings of invariants in skew semigroup rings, and develop their structure theory. The class of Calms orders generalizes classical orders in noncommutative rings and contains many important examples, such as the Generalized Weyl algebras, the universal enveloping algebra of the general linear Lie algebra, associated Yangians and finite W-algebras (C) 2010 Elsevier Inc All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi viene studiata la corrispondenza di Galois. Tale corrispondenza mette in relazione particolari sottogruppi con sottocampi intermedi di un'estensione finita.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nella tesi viene studiata tramite un certo numero di esempi la corrispondenza di Galois per polinomi di terzo e quarto grado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questa tesi tratta di argomenti di Teoria di Galois. In essa sono presenti alcuni richiami fondamentali della teoria di Galois, come il gruppo di Galois di una estensione di campi di Galois e la corrispondenza di Galois. Prosegue con lo studio delle radici m-esime primitive dell'unità e dei polinomi ciclotomici. Infine si studia il gruppo di Galois di un polinomio ciclotomico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last 15 years, many class number formulas and main conjectures have been proven. Here, we discuss such formulas on the Selmer groups of the three-dimensional adjoint representation ad(φ) of a two-dimensional modular Galois representation φ. We start with the p-adic Galois representation φ0 of a modular elliptic curve E and present a formula expressing in terms of L(1, ad(φ0)) the intersection number of the elliptic curve E and the complementary abelian variety inside the Jacobian of the modular curve. Then we explain how one can deduce a formula for the order of the Selmer group Sel(ad(φ0)) from the proof of Wiles of the Shimura–Taniyama conjecture. After that, we generalize the formula in an Iwasawa theoretic setting of one and two variables. Here the first variable, T, is the weight variable of the universal p-ordinary Hecke algebra, and the second variable is the cyclotomic variable S. In the one-variable case, we let φ denote the p-ordinary Galois representation with values in GL2(Zp[[T]]) lifting φ0, and the characteristic power series of the Selmer group Sel(ad(φ)) is given by a p-adic L-function interpolating L(1, ad(φk)) for weight k + 2 specialization φk of φ. In the two-variable case, we state a main conjecture on the characteristic power series in Zp[[T, S]] of Sel(ad(φ) ⊗ ν−1), where ν is the universal cyclotomic character with values in Zp[[S]]. Finally, we describe our recent results toward the proof of the conjecture and a possible strategy of proving the main conjecture using p-adic Siegel modular forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let V be a p-adic representation of Gal(Q̄/Q). One of the ideas of Wiles’s proof of FLT is that, if V is the representation associated to a suitable autromorphic form (a modular form in his case) and if V′ is another p-adic representation of Gal(Q̄/Q) “closed enough” to V, then V′ is also associated to an automorphic form. In this paper we discuss which kind of local condition at p one should require on V and V′ in order to be able to extend this part of Wiles’s methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss proofs of some new special cases of Serre’s conjecture on odd, degree 2 representations of Gℚ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To provide more efficient and flexible alternatives for the applications of secret sharing schemes, this paper describes a threshold sharing scheme based on exponentiation of matrices in Galois fields. A significant characteristic of the proposed scheme is that each participant has to keep only one master secret share which can be used to reconstruct different group secrets according to the number of threshold values.