985 resultados para Galaxy : center
Resumo:
We observed Sgr A* using the Very Large Array (VLA) and the Giant Metrewave Radio Telescope (GMRT) at multiple centimeter and millimeter wavelengths on 2003 June 17. The measured flux densities of Sgr A*, together with those obtained from the Submillimeter Array (SMA) and the Keck II 10 m telescope on the same date, are used to construct a simultaneous spectrum of Sgr A* from 90 cm to 3.8 mu m. The simultaneous spectrum shows a spectral break at about 3.6 cm, a possible signature of synchrotron self-absorption of the strong radio outburst that occurred near epoch 2003 July 17. At 90 cm, the flux density of Sgr A* is 0.22 +/- 0.06 Jy, suggesting a sharp decrease in flux density at wavelengths longer than 47 cm. The spectrum at long cm wavelengths appears to be consistent with free-free absorption by a screen of ionized gas with a cutoff similar to 100 cm. This cutoff wavelength appears to be three times longer than that of similar to 30 cm suggested by Davies, Walsh, & Booth based on observations in 1974 and 1975. Our analysis suggests that the flux densities of Sgr A* at wavelengths longer than 30 cm could be attenuated and modulated by stellar winds from massive stars close to Sgr A*.
Resumo:
Aims. We report on simultaneous observations and modeling of mid-infrared (MIR), near-infrared (NIR), and submillimeter (sub-mm) emission of the source Sgr A * associated with the supermassive black hole at the center of our Galaxy. Our goal was to monitor the activity of Sgr A* at different wavelengths in order to constrain the emitting processes and gain insight into the nature of the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007. Results. The observations reveal remarkable variability in the NIR and sub-mm during the five nights of observation. No source was detected in the MIR, but we derived the lowest upper limit for a flare at 8.59 mu m (22.4 mJy with A(8.59 mu m) = 1.6 +/- 0.5). This observational constraint makes us discard the observed NIR emission as coming from a thermal component emitting at sub-mm frequencies. Moreover, comparison of the sub-mm and NIR variability shows that the highest NIR fluxes (flares) are coincident with the lowest sub-mm levels of our five-night campaign involving three flares. We explain this behavior by a loss of electrons to the system and/or by a decrease in the magnetic field, as might conceivably occur in scenarios involving fast outflows and/or magnetic reconnection.
Resumo:
Context. The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Via Lactea is a deep near-IR survey mapping the Galactic bulge and southern plane. Particularly for the bulge area, VVV is covering similar to 315 deg(2). Data taken during 2010 and 2011 covered the entire bulge area in the JHKs bands. Aims. We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour-magnitude diagram (CMD) for the entire Galactic bulge. Methods. Photometric data in the JHK(s) bands were combined to produce a single and huge data set containing 173 150 467 sources in the three bands, for the similar to 315 deg(2) covered by VVV in the bulge. Selecting only the data points flagged as stellar, the total number of sources is 84 095 284. Results. We built the largest colour-magnitude diagrams published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b similar to -8 degrees-10 degrees, while in the inner part (b similar to -3 degrees) they appear to be spreading in colour, or even splitting into a secondary peak. Stellar population models show the predominance of main-sequence and giant stars. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J - K-s) similar to 0.7-0.9 mag and K-s greater than or similar to 14 mag. Conclusions. The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the outer bulge is the signature of the X-shaped MW bulge, while the spreading of the RC in colour, and even its splitting into a secondary peak, are caused by reddening effects. The region around the Galactic centre is harder to interpret because it is strongly affected by reddening and extinction.
Resumo:
The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A∗. Young, massive stars within 0.5 pc of Sgr A∗ are evidence of an episode of intense star formation near the black hole a few million years ago, which might have left behind a young neutron star traveling deep into Sgr A∗’s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. With a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4±0.3 arcsec from Sgr A∗, and refine the source spin period and its derivative (P = 3.7635537(2) s and ˙ P = 6.61(4) × 10−12 s s−1), confirmed by quasi simultaneous radio observations performed with the Green Bank Telescope and Parkes Radio Telescope, which also constrain a dispersion measure of DM = 1750 ± 50 pc cm−3, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ≈0.07–2 pc from Sgr A∗. Simulations of its possible motion around Sgr A∗ show that it is likely (∼90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.
Resumo:
La galaxie spirale barrée NGC 5430 est particulière en ce sens qu’elle présente un noeud Wolf-Rayet très lumineux et des bras asymétriques. Des spectres longue-fente le long de la barre et dans le bras déformé ainsi que des données SpIOMM couvrant l’ensemble de la galaxie ont été analysées. L’absorption stellaire sous-jacente a été soustraite des spectres longue-fente à l’aide d’un ajustement de modèles théoriques de populations stellaires fait avec le programme GANDALF. L’absorption a un impact très important sur le calcul de l’extinction ainsi que sur les différents diagnostics propres aux régions HII et aux populations stellaires jeunes. Enfin, cette étude montre que NGC 5430 comporte une composante gazeuse ionisée diffuse sur toute son étendue et qu’il est important d’en tenir compte afin d’appliquer correctement les diagnostics. Un des scénarios évolutifs proposés au terme de cette étude est que le noeud Wolf-Rayet constitue le restant d’une petite galaxie ou d’un nuage intergalactique qui serait entré en collision avec NGC 5430. Une structure englobant le noeud Wolf-Rayet se déplace à une vitesse considérablement inférieure (50 - 70 km s-1) à celle attendue à une telle distance du centre de la galaxie (200 - 220 km s-1). De plus, le noeud Wolf-Rayet semble très massif puisque l’intensité maximale du continu stellaire de cette région est semblable à celle du noyau et est de loin supérieure à celle de l’autre côté de la barre. Le nombre d’étoiles Wolf-Rayet (2150) est aussi considérable. Il n’est toutefois pas exclu que la différence de vitesses observée témoigne d’un écoulement de gaz le long de la barre, qui alimenterait la formation stellaire du noeud Wolf-Rayet ou du noyau.
Resumo:
The work presented in my thesis addresses the two cornerstones of modern astronomy: Observation and Instrumentation. Part I deals with the observation of two nearby active galaxies, the Seyfert 2 galaxy NGC 1433 and the Seyfert 1 galaxy NGC 1566, both at a distance of $\sim10$ Mpc, which are part of the Nuclei of Galaxies (NUGA) sample. It is well established that every galaxy harbors a super massive black hole (SMBH) at its center. Furthermore, there seems to be a fundamental correlation between the stellar bulge and SMBH masses. Simulations show that massive feedback, e.g., powerful outflows, in Quasi Stellar Objects (QSOs) has an impact on the mutual growth of bulge and SMBH. Nearby galaxies follow this relation but accrete mass at much lower rates. This gives rise to the following questions: Which mechanisms allow feeding of nearby Active Galactic Nuclei (AGN)? Is this feeding triggered by events, e.g., star formation, nuclear spirals, outflows, on $\sim500$ pc scales around the AGN? Does feedback on these scales play a role in quenching the feeding process? Does it have an effect on the star formation close to the nucleus? To answer these questions I have carried out observations with the Spectrograph for INtegral Field Observation in the Near Infrared (SINFONI) at the Very Large Telescope (VLT) situated on Cerro Paranal in Chile. I have reduced and analyzed the recorded data, which contain spatial and spectral information in the H-band ($1.45 \mic-1.85 \mic$) and K-band ($1.95 \mic-2.45 \mic$) on the central $10\arcsec\times10\arcsec$ of the observed galaxies. Additionally, Atacama Large Millimeter/Sub-millimeter Array (ALMA) data at $350$ GHz ($\sim0.87$ mm) as well as optical high resolution Hubble Space Telescope (HST) images are used for the analysis. For NGC 1433 I deduce from comparison of the distributions of gas, dust, and intensity of highly ionized emission lines that the galaxy center lies $\sim70$ pc north-northwest of the prior estimate. A velocity gradient is observed at the new center, which I interpret as a bipolar outflow, a circum nuclear disk, or a combination of both. At least one dust and gas arm leads from a $r\sim200$ pc ring towards the nucleus and might feed the SMBH. Two bright warm H$_2$ gas spots are detected that indicate hidden star formation or a spiral arm-arm interaction. From the stellar velocity dispersion (SVD) I estimate a SMBH mass of $\sim1.74\times10^7$ \msol. For NGC 1566 I observe a nuclear gas disk of $\sim150$ pc in radius with a spiral structure. I estimate the total mass of this disk to be $\sim5.4\times10^7$ \msol. What mechanisms excite the gas in the disk is not clear. Neither can the existence of outflows be proven nor is star formation detected over the whole disk. On one side of the spiral structure I detect a star forming region with an estimated star formation rate of $\sim2.6\times10^{-3}$ \msol\ yr$^{-1}$. From broad Br$\gamma$ emission and SVD I estimate a mean SMBH mass of $\sim5.3\times10^6$ \msol\ with an Eddington ratio of $\sim2\times10^{-3}$. Part II deals with the final tests of the Fringe and Flexure Tracker (FFTS) for LBT INterferometric Camera and the NIR/Visible Adaptive iNterferometer for Astronomy (LINC-NIRVANA) at the Large Binocular Telescope (LBT) in Arizona, USA, which I conducted. The FFTS is the subsystem that combines the two separate beams of the LBT and enables near-infrared interferometry with a significantly large field of view. The FFTS has a cryogenic system and an ambient temperature system which are separated by the baffle system. I redesigned this baffle to guarantee the functionality of the system after the final tests in the Cologne cryostat. The redesign did not affect any scientific performance of LINC-NIRVANA. I show in the final cooldown tests that the baffle fulfills the temperature requirement and stays $<110$ K whereas the moving stages in the ambient system stay $>273$ K, which was not given for the old baffle design. Additionally, I test the tilting flexure of the whole FFTS and show that accurate positioning of the detector and the tracking during observation can be guaranteed.
Resumo:
In the course of our 870 μm APEX/LABOCA follow-up of the Herschel Lensing Survey we have detected a source in AS1063 (RXC J2248.7-4431) that has no counterparts in any of the Herschel PACS/SPIRE bands, it is a Herschel “drop-out” with S_870/S_500 ≥ 0.5. The 870 μm emission is extended and centered on the brightest cluster galaxy, suggesting either a multiply imaged background source or substructure in the Sunyaev-Zel’dovich increment due to inhomogeneities in the hot cluster gas of this merging cluster. We discuss both interpretations with emphasis on the putative lensed source. Based on the observed properties and on our lens model we find that this source may be the first submillimeter galaxy (SMG) with a moderate far-infrared (FIR) luminosity (L_FIR < 10^12 L_⊙) detected so far at z > 4. In deep HST observations we identified a multiply imaged z ~ 6 source and measured its spectroscopic redshift to be z = 6.107 with VLT/FORS. This source may be associated with the putative SMG, but it is most likely offset spatially by 10−30 kpc and they may be interacting galaxies. With a FIR luminosity in the range [5−15] × 10^11 L_⊙ corresponding to a star formation rate in the range [80−260] M_⊙ yr^-1, this SMG would be more representative of the z > 4 dusty galaxies than the extreme starbursts detected so far. With a total magnification of ~25 it would open a unique window to the normal dusty galaxies at the end of the epoch of reionization.
Resumo:
Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P-jet = 10(44-45) erg s(-1), typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.
Resumo:
We present high-resolution spectroscopic observations of LS 4825, a V = 12 B-type star in the Galactic center direction. On the basis of its stellar and interstellar spectra, we infer that it is likely to be a young supergiant at a distance of 21 +/- 5 kpc, and hence lying on the far side of the 'Galaxy. Adopting this hypothesis, a differential abundance analysis shows LS 4825 to have a chemical composition that is consistent with local B-type supergiants. These observations therefore represent the first detailed investigation of a star on the far side of the Galactic center. We trace multiple interstellar components in Ca II K and Na I D spectra, with velocities -206 less than or equal to v(lst) less than or equal to +93 km s(-1). We consider the likely origin of this gas and find that some components appear to trace matter lying close to the Galactic center. We discuss the possible use of such sight lines in furthering our understanding both of the nature of gas around the Galactic center and of the abundance gradient of the Galaxy.
Resumo:
We report on Suzaku observations of selected regions within the southern giant lobe of the radio galaxy Centaurus A. In our analysis we focus on distinct X-ray features detected with the X-ray Imaging Spectrometer within the range 0.5-10 keV, some of which are likely associated with fine structure of the lobe revealed by recent high-quality radio intensity and polarization maps. With the available photon statistics, we find that the spectral properties of the detected X-ray features are equally consistent with thermal emission from hot gas with temperatures kT > 1 keV, or with a power-law radiation continuum characterized by photon indices Gamma similar to 2.0 +/- 0.5. However, the plasma parameters implied by these different models favor a synchrotron origin for the analyzed X-ray spots, indicating that a very efficient acceleration of electrons up to greater than or similar to 10 TeV energies is taking place within the giant structure of Centaurus A, albeit only in isolated and compact regions associated with extended and highly polarized radio filaments. We also present a detailed analysis of the diffuse X-ray emission filling the whole field of view of the instrument, resulting in a tentative detection of a soft excess component best fitted by a thermal model with a temperature of kT similar to 0.5 keV. The exact origin of the observed excess remains uncertain, although energetic considerations point to thermal gas filling the bulk of the volume of the lobe and mixed with the non-thermal plasma, rather than to the alternative scenario involving a condensation of the hot intergalactic medium around the edges of the expanding radio structure. If correct, this would be the first detection of the thermal content of the extended lobes of a radio galaxy in X-rays. The corresponding number density of the thermal gas in such a case is n(g) similar to 10(-4) cm(-3), while its pressure appears to be in almost exact equipartition with the volume-averaged non-thermal pressure provided by the radio-emitting electrons and the lobes' magnetic field. A prominent large-scale fluctuation of the Galactic foreground emission, resulting in excess foreground X-ray emission aligned with the lobe, cannot be ruled out. Although tentative, our findings potentially imply that the structure of the extended lobes in active galaxies is likely to be highly inhomogeneous and non-uniform, with magnetic reconnection and turbulent acceleration processes continuously converting magnetic energy to internal energy of the plasma particles, leading to possibly significant spatial and temporal variations in the plasma beta parameter around the volume-averaged equilibrium condition beta similar to 1.
Resumo:
The mass estimation of galaxy clusters is a crucial point for modern cosmology, and can be obtained by several different techniques. In this work we discuss a new method to measure the mass of galaxy clusters connecting the gravitational potential of the cluster with the kinematical properties of its surroundings. We explore the dynamics of the structures located in the region outside virialized cluster, We identify groups of galaxies, as sheets or filaments, in the cluster outer region, and model how the cluster gravitational potential perturbs the motion of these structures from the Hubble fow. This identification is done in the redshift space where we look for overdensities with a filamentary shape. Then we use a radial mean velocity profile that has been found as a quite universal trend in simulations, and we fit the radial infall velocity profile of the overdensities found. The method has been tested on several cluster-size haloes from cosmological N-body simulations giving results in very good agreement with the true values of virial masses of the haloes and orientation of the sheets. We then applied the method to the Coma cluster and even in this case we found a good correspondence with previous. It is possible to notice a mass discrepancy between sheets with different alignments respect to the center of the cluster. This difference can be used to reproduce the shape of the cluster, and to demonstrate that the spherical symmetry is not always a valid assumption. In fact, if the cluster is not spherical, sheets oriented along different axes should feel a slightly different gravitational potential, and so give different masses as result of the analysis described before. Even this estimation has been tested on cosmological simulations and then applied to Coma, showing the actual non-sphericity of this cluster.
Resumo:
Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4–16 times the mass of the sun, whereas the latter are “supermassive black holes” with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong.
Resumo:
We present Keck I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy at a redshift of z ~ 1.7. Its spectrum reveals both Hα and [Nii] emission lines and strong Balmer absorption lines. The Hα and Spitzer MIPS 24 μm fluxes are both weak, thus indicating a low star-formation rate of SFR≲5-10 M_⨀ yr−1. This, added to a relatively young age of ~700 Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to three other galaxies in our sample, by z ~ 1.5. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, σ_LOG^gas = 127 ± 32 km s^−1, is nearly 40% smaller than that of its stars, σ_LOG^* = 215 ± 35 km s^−1. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of ~1.5 with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors.
Resumo:
We are undertaking a program to measure the characteristics of the intracluster light ( ICL; total flux, profile, color, and substructure) in a sample of 10 galaxy clusters with a range of cluster mass, morphology, and redshift. We present here the methods and results for the first cluster in that sample, A3888. We have identified an ICL component in A3888 in V and r that contains 13% +/- 5% of the total cluster light and extends to 700 h(70)(-1) kpc (similar to 0.3r(200)) from the center of the cluster. The ICL color in our smallest radial bin is V - r 0.3 +/- 0.1, similar to the central cluster elliptical galaxies. The ICL is redder than the galaxies at 400 h(70)(-1) kpc < r < 700 h(70)(-1) kpc, although the uncertainty in any one radial bin is high. Based on a comparison of V - r color with simple stellar models, the ICL contains a component that formed more than 7 Gyr ago ( at z less than 1) with a high-metallicity ( 1.0 Z(circle dot) < Z(ICL) less than or similar to 2.5 Z(circle dot)) and a more centralized component that contains stars formed within the past 5 Gyr ( at z similar to 1). The profile of the ICL can be roughly fitted by a shallow exponential in the outer regions and a steeper exponential in the central region. We also find a concentration of diffuse light around a small group of galaxies 1.4 h(70)(-1) Mpc from the center of the cluster. In addition, we find three low surface brightness features near the cluster center that are blue ( V - r 0.0) and contain a total flux of 0.1M*. Based on these observations and X-ray and galaxy morphology, we suggest that this cluster is entering a phase of significant merging of galaxy groups in the core, whereupon we expect the ICL fraction to grow significantly with the formation of a cD galaxy, as well as the infall of groups.
Resumo:
Hypervelocity stars (HVSs) travel with velocities so high that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US 708. Traveling with a velocity of ∼1200 kilometers per second, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVSs. Furthermore, we detected that US 708 is a fast rotator. According to our binary evolution model, it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova.