74 resultados para Galactosamine
Resumo:
Simple and convenient methods for introducing deuterium label at C-3 and C-6 position of N-acetyl-D-galactosamine and D-galactose, respectively, are described. For the synthesis of 2-acetamido-2-deoxy-D-3-[2H] galactopyranose, benzyl 2-acetamido-2-deoxy-4,6-O-benzylidene-agr-D-galactopyranoside was oxidized with dimethyl sulfoxide- acetic anhydride and the product was reduced with sodium borodeuteride to introduce the deuterium at C-3. After benzylidene reduction, the mixture was subjected to hydrogenolysis and purified by column chromatography. 1,2:3,4-di-O-isopropylidene-agr-D-galactopyranoside was oxidized followed by reduction with sodium borodeuteride and deprotection to yield D-6-[2H] galactose.
Resumo:
We hypothesized that the hepatotoxicity that develops after the induction of oxidative stress (induced by d-galactosamine [GalN]) can be ameliorated by alpha-tocopherol (ATC) and the soy isoflavone daidzein. To test this, we ranked and assigned male Wistar rats into 6 groups, which involved pretreatment (ATC or daidzein) for 1 hour followed by treatment (GalN) for 23 hours. Histopathologic analysis showed that GalN administration induced marked necrosis (P < .001), steatosis (P < .001), both lobular and portal inflammations (P < .001), overall histopathologic score (P < .001), and activation of caspase-3 in the liver (P < .001). Immunohistochemical staining of malondialdehyde-protein adducts, a measure of oxidative stress, was increased in response to GalN (P < .001). Paradoxically, there were increases in total (P < .05) and cytosolic superoxide dismutase (P < .001) activities after GalN administration, indicative of an up-regulation of antioxidant defenses. The concentration of total protein (P < .001), albumin (P < .01), and globulin fractions (P < .001) in the plasma, as well as the activity of aspartate aminotransferase (P < .001), was significantly perturbed after GalN treatment, reflective of overall acute hepatic injury. Administration of daidzein showed a significant amelioration of the Ga1N-induced increase in malondialdehyde-protein adducts (P < .01) and cytosolic superoxide dismutase activities (P < .01) in the liver. However, all other variables were not significantly altered in response to daidzein. In response to ATC pretreatment, the total histopathologic score (P < .05), degree of necrosis (P < .05), and both lobular (P < .05) and portal (P = .05) inflammations were significantly ameliorated. To conclude, both daidzein and ATC protect the liver against oxidative damage possibly via different pathways.
Resumo:
BACKGROUND & AIMS Metabolomics is comprehensive analysis of low-molecular-weight endogenous metabolites in a biological sample. It could enable mapping of perturbations of early biochemical changes in diseases and hence provide an opportunity to develop predictive biomarkers that could provide valuable insights into the mechanisms of diseases. The aim of this study was to elucidate the changes in endogenous metabolites and to phenotype the metabolic profiling of d-galactosamine (GalN)-inducing acute hepatitis in rats by UPLC-ESI MS. METHODS The systemic biochemical actions of GalN administration (ip, 400 mg/kg) have been investigated in male wistar rats using conventional clinical chemistry, liver histopathology and metabolomic analysis of UPLC- ESI MS of urine. The urine was collected predose (-24 to 0 h) and 0-24, 24-48, 48-72, 72-96 h post-dose. Mass spectrometry of the urine was analysed visually and via conjunction with multivariate data analysis. RESULTS Results demonstrated that there was a time-dependent biochemical effect of GalN dosed on the levels of a range of low-molecular-weight metabolites in urine, which was correlated with developing phase of the GalN-inducing acute hepatitis. Urinary excretion of beta-hydroxybutanoic acid and citric acid was decreased following GalN dosing, whereas that of glycocholic acid, indole-3-acetic acid, sphinganine, n-acetyl-l-phenylalanine, cholic acid and creatinine excretion was increased, which suggests that several key metabolic pathways such as energy metabolism, lipid metabolism and amino acid metabolism were perturbed by GalN. CONCLUSION This metabolomic investigation demonstrates that this robust non-invasive tool offers insight into the metabolic states of diseases.
Resumo:
The O-specific polysaccharide (OPS) is a variable constituent of the lipopolysaccharide of Gram-negative bacteria. The polymorphic nature of OPSs within a species is usually first defined serologically, and the current serotyping scheme for Yersinia pseudotuberculosis consists of 21 O serotypes of which 15 have been characterized genetically and structurally. Here, we present the structure and DNA sequence of Y. pseudotuberculosis O:10 OPS. The O unit consists of one residue each of d-galactopyranose, N-acetyl-d-galactosamine (2-amino-2-deoxy-d-galactopyranose) and d-glucopyranose in the backbone, with two colitose (3,6-dideoxy-l-xylo-hexopyranose) side-branch residues. This structure is very similar to that shared by Escherichia coli O111 and Salmonella enterica O35. The gene cluster sequences of these serotypes, however, have only low levels of similarity to that of Y. pseudotuberculosis O:10, although there is significant conservation of gene order. Within Y. pseudotuberculosis, the O10 structure is most closely related to the O:6 and O:7 structures.
Resumo:
The repeat unit structure of the K2 capsule from an extensively antibiotic-resistant Acinetobacter baumannii global clone 2 (GC2) strain was determined. The oligosaccharide contains three simple sugars, d-glucopyranose, d-galatopyranose and N-acetyl-d-galactosamine, and the complex sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (Pse5Ac7Ac or pseudaminic acid), which has not previously been reported in any A. baumannii capsule. The strain was found to carry all the genes required for the synthesis of the sugars and construction of the K2 structure. The linkages catalyzed by the initiating transferase, three glycosyltransferases and the Wzy polymerase were also predicted. Examination of publicly available A. baumannii genome sequences revealed that the same gene cluster, KL2, often occurs in extensively antibiotic-resistant GC2 isolates and in further strain types. The gene module responsible for the synthesis of pseudaminic acid was also detected in four other K loci. A related module including genes for an acylated relative of pseudaminic acid was also found in two new KL types. A polymerase chain reaction scheme was developed to detect all modules containing genes for sugars based on pseudaminic acid and to specifically detect KL2.
Resumo:
An Acinetobacter baumannii global clone 1 (GC1) isolate was found to carry a novel capsule biosynthesis gene cluster, designated KL12. KL12 contains genes predicted to be involved in the synthesis of simple sugars, as well as ones for N-acetyl-l-fucosamine (l-FucpNAc) and N-acetyl-d-fucosamine (d-FucpNAc). It also contains a module of 10 genes, 6 of which are required for 5,7-di-N-acetyl-legionaminic acid synthesis. Analysis of the composition of the capsule revealed the presence of N-acetyl-d-galactosamine, l-FucpNAc and d-FucpNAc, confirming the role of fnlABC and fnr/gdr genes in the synthesis of l-FucpNAc and d-FucpNAc, respectively. A non-2-ulosonic acid, shown to be 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-altro-non-2-ulosonic acid, was also detected. This sugar has not previously been recovered from biological source, and was designated 5,7-di-N-acetyl-acinetaminic acid (Aci5Ac7Ac). Proteins encoded by novel genes, named aciABCD, were predicted to be involved in the conversion of 5,7-di-N-acetyl-legionaminic acid to Aci5Ac7Ac. A pathway for 5,7-di-N-acetyl-8-epilegionaminic acid biosynthesis was also proposed. In available A. baumannii genomes, genes for the synthesis of 5,7-di-N-acetyl-acinetaminic acid were only detected in two closely related capsule gene clusters, KL12 and KL13, which differ only in the wzy gene. KL12 and KL13 are carried by isolates belonging to clinically important clonal groups, GC1, GC2 and ST25. Genes for the synthesis of N-acyl derivatives of legionaminic acid were also found in 10 further A. baumannii capsule gene clusters, and three carried additional genes for production of 5,7-di-N-acetyl-8-epilegionaminic acid.
Resumo:
Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.
Resumo:
The repeat unit of the K12 capsular polysaccharide isolated from the Acinetobacter baumannii global clone 1 clinical isolate, D36, was elucidated by means of chemical and spectroscopical methods. The structure was shown to contain N-acetyl-D-galactosamine (D-GalpNAc), N-acetyl-D-fucosamine and N-acetyl-L-fucosamine linked together in the main chain, with the novel sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-altro-non-2-ulosonic acid (5,7-di-N-acetylacinetaminic acid or Aci5Ac7Ac), attached to D-GalpNAc as a side branch. This matched the sugar composition of the K12 capsule and the genetic content of the KL12 capsule gene cluster reported previously. D-FucpNAc was predicted to be the substrate for the initiating transferase, ItrB3, with the Wzy polymerase making a α-D-FucpNAc-(1 → 3)-D-GalpNAc linkage between the repeat units. The three glycosyltransferases encoded by KL12 are all retaining glycosyltransferases and were predicted to form specific linkages between the sugars in the K12 repeat unit.
Resumo:
The structure of the capsular polysaccharide (CPS) from an Acinetobacter baumannii global clone 2 (GC2) clinical isolate RBH4 that carries the KL6 gene cluster was elucidated by means of chemical and spectroscopical methods. The repeating unit of K6 CPS is linear and contains N-acetyl-d-galactosamine (d-GalpNAc), two d-galactose (d-Galp) residues and 5,7-di-N-acetylpseudaminic acid (Pse5Ac7Ac). The synthesis of these sugars could be attributed to genes in the KL6 capsule biosynthesis gene cluster, and the formation of the linkages between the sugars were assigned to glycosyltransferases or the Wzy polymerase encoded in KL6.
Resumo:
The winged-bean tuber lectin binds to N-dansyl(5-dimethylaminonaphthalene-1-sulphonic acid)galactosamine, leading to a 12.5-fold increase in dansyl fluorescence with a concomitant 25 nm blue-shift in the emission maximum. The enhancement of fluorescence intensity was completely reversed by the addition of methyl α-galactopyranoside. The lectin has two binding sites per molecule for this fluorescent sugar and an association constant of 2.59 · 105 M−1 at 25° C. The binding of N-dansylgalactosamine to the lectin shows that it can accommodate a large hydrophobic substituent on the C-2 carbon of d-galactose. Studies with other sugars indicate that a hydrophobic substituent with α-conformation at the anomeric position increases the affinity of binding. The C-4 and C-6 hydroxyl groups are also critical for sugar binding to this lectin.
Resumo:
The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.
Resumo:
A basic lectin (pI approximately 10.0) was purified to homogeneity from the seeds of winged bean (Psophocarpus tetragonolobus) by affinity chromatography on Sepharose 6-aminocaproyl-D-galactosamine. The lectin agglutinated trypsinized rabbit erythrocytes and had a relative molecular mass of 58,000 consisting of two subunits of Mr 29,000. The lectin binds to N-dansylgalactosamine, leading to a 15-fold increase in dansyl fluorescence with a concomitant 25-nm blue shift in the emission maximum. The lectin has two binding sites/dimer for this sugar and an association constant of 4.17 X 10(5) M-1 at 25 degrees C. The strong binding to N-dansylgalactosamine is due to a relatively positive entropic contribution as revealed by the thermodynamic parameters: delta H = -33.62 kJ mol-1 and delta S0 = -5.24 J mol-1 K-1. Binding of this sugar to the lectin shows that it can accommodate a large hydrophobic substituent on the C-2 carbon of D-galactose. Studies with other sugars indicate that a hydrophobic substituent in alpha- conformation at the anomeric position increases the affinity of binding. The C-4 and C-6 hydroxyl groups are critical for sugar binding to this lectin. Lectin difference absorption spectra in the presence of N-acetylgalactosamine indicate perturbation of tryptophan residues on sugar binding. The results of stopped flow kinetics with N- dansylgalactosamine and the lectin are consistent with a simple one- step mechanism for which k+1 = 1.33 X 10(4) M-1 s-1 and k-1 = 3.2 X 10(- 2) s-1 at 25 degrees C. This k-1 is slower than any reported for a lectin-monosaccharide complex so far. The activation parameters indicate an enthalpically controlled association process.
Resumo:
Crystal structure of a lectin purified from Butea monosperma seeds was determined by Molecular Replacement method. Its primary structure was determined by Tandem Mass Spectroscopy and electron density maps from X-ray diffraction data. Its quaternary structure was tetrameric, formed of two monomers, alpha and beta, beta appearing as truncated alpha. The occurrence of two tetramers in the asymmetric unit of the crystal might be a consequence of asymmetric contacts due to difference in glycosylation and variable loops structures, to form an `octamer-structure'. The crystal structure showed binding pockets for gamma Abu, having a proposed role in plant defense, at the interface of canonical dimer-partners. Hemagglutination studies, enzyme kinetics, isothermal titration calorimetry and molecular dynamics showed that the lectin is specific to N-acetyl D-galactosamine, galactose and lactose in decreasing order, and alpha-amylase inhibitor. (C) 2014 Elsevier B.V. All rights reserved.