554 resultados para Gabor Wavelets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we address issues in segmentation Of remotely sensed LIDAR (LIght Detection And Ranging) data. The LIDAR data, which were captured by airborne laser scanner, contain 2.5 dimensional (2.5D) terrain surface height information, e.g. houses, vegetation, flat field, river, basin, etc. Our aim in this paper is to segment ground (flat field)from non-ground (houses and high vegetation) in hilly urban areas. By projecting the 2.5D data onto a surface, we obtain a texture map as a grey-level image. Based on the image, Gabor wavelet filters are applied to generate Gabor wavelet features. These features are then grouped into various windows. Among these windows, a combination of their first and second order of statistics is used as a measure to determine the surface properties. The test results have shown that ground areas can successfully be segmented from LIDAR data. Most buildings and high vegetation can be detected. In addition, Gabor wavelet transform can partially remove hill or slope effects in the original data by tuning Gabor parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new face verification algorithm based on Gabor wavelets and AdaBoost. In the algorithm, faces are represented by Gabor wavelet features generated by Gabor wavelet transform. Gabor wavelets with 5 scales and 8 orientations are chosen to form a family of Gabor wavelets. By convolving face images with these 40 Gabor wavelets, the original images are transformed into magnitude response images of Gabor wavelet features. The AdaBoost algorithm selects a small set of significant features from the pool of the Gabor wavelet features. Each feature is the basis for a weak classifier which is trained with face images taken from the XM2VTS database. The feature with the lowest classification error is selected in each iteration of the AdaBoost operation. We also address issues regarding computational costs in feature selection with AdaBoost. A support vector machine (SVM) is trained with examples of 20 features, and the results have shown a low false positive rate and a low classification error rate in face verification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a feature selection approach based on Gabor wavelet feature and boosting for face verification. By convolution with a group of Gabor wavelets, the original images are transformed into vectors of Gabor wavelet features. Then for individual person, a small set of significant features are selected by the boosting algorithm from a large set of Gabor wavelet features. The experiment results have shown that the approach successfully selects meaningful and explainable features for face verification. The experiments also suggest that for the common characteristics such as eyes, noses, mouths may not be as important as some unique characteristic when training set is small. When training set is large, the unique characteristics and the common characteristics are both important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a novel method of plant classification using Gabor wavelet filters to extract texture filters in a foliar surface. The aim of this promising method is to add to the results obtained by other leaf attributes (such as shape, contour, color, among others), increasing, therefore, the percentage of classification of plant species. To corroborate the efficiency of the technique, an experiment using 20 species from Brazilian flora was done and discussed. The results are also compared with texture Fourier descriptors and cooccurrence matrices. (C) 2009 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 19, 236-243, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20201

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article describes researches of a method of person recognition by face image based on Gabor wavelets. Scales of Gabor functions are determined at which the maximal percent of recognition for search of a person in a database and minimal percent of mistakes due to false alarm errors when solving an access control task is achieved. The carried out researches have shown a possibility of improvement of recognition system work parameters in the specified two modes when the volume of used data is reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo se enfoca en la implementación de un detector de arrecife de coral de desempeño rápido que se utiliza para un vehículo autónomo submarino (Autonomous Underwater Vehicle, AUV, por sus siglas en inglés). Una detección rápida de la presencia de coral asegura la estabilización del AUV frente al arrecife en el menor tiempo posible, evitando colisiones con el coral. La detección de coral se hace en una imagen que captura la escena que percibe la cámara del AUV. Se realiza una clasificación píxel por píxel entre dos clases: arrecife de coral y el plano de fondo que no es coral. A cada píxel de la imagen se le asigna un vector característico, el mismo que se genera mediante el uso de filtros Gabor Wavelets. Éstos son implementados en C++ y la librería OpenCV. Los vectores característicos son clasificados a través de nueve algoritmos de máquinas de aprendizaje. El desempeño de cada algoritmo se compara mediante la precisión y el tiempo de ejecución. El algoritmo de Árboles de Decisión resultó ser el más rápido y preciso de entre todos los algoritmos. Se creó una base de datos de 621 imágenes de corales de Belice (110 imágenes de entrenamiento y 511 imágenes de prueba).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Age estimation from facial images is increasingly receiving attention to solve age-based access control, age-adaptive targeted marketing, amongst other applications. Since even humans can be induced in error due to the complex biological processes involved, finding a robust method remains a research challenge today. In this paper, we propose a new framework for the integration of Active Appearance Models (AAM), Local Binary Patterns (LBP), Gabor wavelets (GW) and Local Phase Quantization (LPQ) in order to obtain a highly discriminative feature representation which is able to model shape, appearance, wrinkles and skin spots. In addition, this paper proposes a novel flexible hierarchical age estimation approach consisting of a multi-class Support Vector Machine (SVM) to classify a subject into an age group followed by a Support Vector Regression (SVR) to estimate a specific age. The errors that may happen in the classification step, caused by the hard boundaries between age classes, are compensated in the specific age estimation by a flexible overlapping of the age ranges. The performance of the proposed approach was evaluated on FG-NET Aging and MORPH Album 2 datasets and a mean absolute error (MAE) of 4.50 and 5.86 years was achieved respectively. The robustness of the proposed approach was also evaluated on a merge of both datasets and a MAE of 5.20 years was achieved. Furthermore, we have also compared the age estimation made by humans with the proposed approach and it has shown that the machine outperforms humans. The proposed approach is competitive with current state-of-the-art and it provides an additional robustness to blur, lighting and expression variance brought about by the local phase features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes a novel texture descriptor based on fractal theory. The method is based on the Bouligand- Minkowski descriptors. We decompose the original image recursively into four equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by concatenating such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the novel technique achieves better results than classical and state-of-the-art texture descriptors, such as Local Binary Patterns, Gabor-wavelets and co-occurrence matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo principal alrededor del cual se desenvuelve este proyecto es el desarrollo de un sistema de reconocimiento facial. Entre sus objetivos específicos se encuentran: realizar una primera aproximación sobre las técnicas de reconocimiento facial existentes en la actualidad, elegir una aplicación donde pueda ser útil el reconocimiento facial, diseñar y desarrollar un programa en MATLAB que lleve a cabo la función de reconocimiento facial, y evaluar el funcionamiento del sistema desarrollado. Este documento se encuentra dividido en cuatro partes: INTRODUCCIÓN, MARCO TEÓRICO, IMPLEMENTACIÓN, y RESULTADOS, CONCLUSIONES Y LÍNEAS FUTURAS. En la primera parte, se hace una introducción relativa a la actualidad del reconocimiento facial y se comenta brevemente sobre las técnicas existentes para desarrollar un sistema biométrico de este tipo. En ella se justifican también aquellas técnicas que acabaron formando parte de la implementación. En la segunda parte, el marco teórico, se explica la estructura general que tiene un sistema de reconocimiento biométrico, así como sus modos de funcionamiento, y las tasas de error utilizadas para evaluar y comparar su rendimiento. Así mismo, se lleva a cabo una descripción más profunda sobre los conceptos y métodos utilizados para efectuar la detección y reconocimiento facial en la tercera parte del proyecto. La tercera parte abarca una descripción detallada de la solución propuesta. En ella se explica el diseño, características y aplicación de la implementación; que trata de un programa elaborado en MATLAB con interfaz gráfica, y que utiliza cuatro sistemas de reconocimiento facial, basados cada uno en diferentes técnicas: Análisis por componentes principales, análisis lineal discriminante, wavelets de Gabor, y emparejamiento de grafos elásticos. El programa ofrece además la capacidad de crear y editar una propia base de datos con etiquetas, dándole aplicación directa sobre el tema que se trata. Se proponen además una serie de características con el objetivo de ampliar y mejorar las funcionalidades del programa diseñado. Dentro de dichas características destaca la propuesta de un modo de verificación híbrido aplicable a cualquier rama de la biometría y un programa de evaluación capaz de medir, graficar, y comparar las configuraciones de cada uno de los sistemas de reconocimiento implementados. Otra característica destacable es la herramienta programada para la creación de grafos personalizados y generación de modelos, aplicable a reconocimiento de objetos en general. En la cuarta y última parte, se presentan al principio los resultados obtenidos. En ellos se contemplan y analizan las comparaciones entre las distintas configuraciones de los sistemas de reconocimiento implementados para diferentes bases de datos (una de ellas formada con imágenes con condiciones de adquisición no controladas). También se miden las tasas de error del modo de verificación híbrido propuesto. Finalmente, se extraen conclusiones, y se proponen líneas futuras de investigación. ABSTRACT The main goal of this project is to develop a facial recognition system. To meet this end, it was necessary to accomplish a series of specific objectives, which were: researching on the existing face recognition technics nowadays, choosing an application where face recognition might be useful, design and develop a face recognition system using MATLAB, and measure the performance of the implemented system. This document is divided into four parts: INTRODUCTION, THEORTICAL FRAMEWORK, IMPLEMENTATION, and RESULTS, CONCLUSSIONS AND FUTURE RESEARCH STUDIES. In the first part, an introduction is made in relation to facial recognition nowadays, and the techniques used to develop a biometric system of this kind. Furthermore, the techniques chosen to be part of the implementation are justified. In the second part, the general structure and the two basic modes of a biometric system are explained. The error rates used to evaluate and compare the performance of a biometric system are explained as well. Moreover, a description of the concepts and methods used to detect and recognize faces in the third part is made. The design, characteristics, and applications of the systems put into practice are explained in the third part. The implementation consists in developing a program with graphical user interface made in MATLAB. This program uses four face recognition systems, each of them based on a different technique: Principal Component Analysis (PCA), Fisher’s Linear Discriminant (FLD), Gabor wavelets, and Elastic Graph Matching (EGM). In addition, with this implementation it is possible to create and edit one´s tagged database, giving it a direct application. Also, a group of characteristics are proposed to enhance the functionalities of the program designed. Among these characteristics, three of them should be emphasized in this summary: A proposal of an hybrid verification mode of a biometric system; and an evaluation program capable of measuring, plotting curves, and comparing different configurations of each implemented recognition system; and a tool programmed to create personalized graphs and models (tagged graph associated to an image of a person), which can be used generally in object recognition. In the fourth and last part of the project, the results of the comparisons between different configurations of the systems implemented are shown for three databases (One of them created with pictures taken under non-controlled environments). The error rates of the proposed hybrid verification mode are measured as well. Finally, conclusions are extracted and future research studies are proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel cortex-inspired feed-forward hierarchical object recognition system based on complex wavelets is proposed and tested. Complex wavelets contain three key properties for object representation: shift invariance, which enables the extraction of stable local features; good directional selectivity, which simplifies the determination of image orientations; and limited redundancy, which allows for efficient signal analysis using the multi-resolution decomposition offered by complex wavelets. In this paper, we propose a complete cortex-inspired object recognition system based on complex wavelets. We find that the implementation of the HMAX model for object recognition in [1, 2] is rather over-complete and includes too much redundant information and processing. We have optimized the structure of the model to make it more efficient. Specifically, we have used the Caltech 5 standard dataset to compare with Serre's model in [2] (which employs Gabor filter bands). Results demonstrate that the complex wavelet model achieves a speed improvement of about 4 times over the Serre model and gives comparable recognition performance. © 2011 IEEE.