982 resultados para GSTM3 polymorphisms
Resumo:
A 3-bp insertion/deletion polymorphism in intron 6 of GSTM3 (rs1799735, GSTM3*A/*B) affects the activity of the phase 2 xenobiotic metabolizing enzyme GSTM3 and has been associated with increased cancer risk. The GSTM3*B allele is rare or absent in Southeast Asians, occurs in 5-20% of Europeans but was detected in 80% of Bantu from South Africa. The wide genetic diversity among Africans led us to investigate whether the high frequency of GSTM3*B prevailed in other sub-Saharan African populations. In 168 healthy individuals from Angola, Mozambique and the São Tomé e Príncipe islands, the GSTM3*B allele was three times more frequent (0.74-0.78) than the GSTM3*A allele (0.22-0.26), with no significant differences in allele frequency across the three groups. We combined these data with previously published results to carry out a multidimensional scaling analysis, which provided a visualization of the worldwide population affinities based on the GSTM3 *A/*B polymorphism.
Resumo:
Brazil hosts the largest Japanese community outside Japan, estimated at 1.5 million individuals, one third of whom are first-generation, Brazilian-born with native Japanese parents. This large community provides a unique opportunity for comparative studies of the distribution of pharmacogenetic polymorphisms in native Japanese versus their Brazilian-born descendants. Functional polymorphisms in genes that modulate drug disposition (CYP2C9, CYP2C19 and GSTM3) or response (VKORC1) and that differ significantly in frequency in native Japanese versus Brazilians with no Japanese ancestry were selected for the present study. Healthy subjects (200 native Japanese and 126 first-generation Japanese descendants) living in agricultural colonies were enrolled. Individual DNA was genotyped using RFLP (GSTM3*A/B) or TaqMan Detection System assays (CYP2C9*2 and *3; CYP2C19*2 and *3; VKORC1 3673G>A, 5808T>G, 6853G>C, and 9041G>A). No difference was detected in the frequency of these pharmacogenetic polymorphisms between native Japanese and first-generation Japanese descendants. In contrast, significant differences in the frequency of each polymorphism were observed between native or first-generation Japanese and Brazilians with no Japanese ancestry. The VKORC1 3673G>A, 6853G>C and 9041G>A single nucleotide polymorphisms were in linkage disequilibrium in both native and first-generation Japanese living in Brazil. The striking similarity in the frequency of clinically relevant pharmacogenetic polymorphisms between Brazilian-born Japanese descendants and native Japanese suggests that the former may be recruited for clinical trials designed to generate bridging data for the Japanese population in the context of the International Conference on Harmonization.
Resumo:
Brazil hosts the largest Japanese community outside Japan, estimated at 1.5 million individuals, one third of whom are first-generation, Brazilian-born with native Japanese parents. This large community provides a unique opportunity for comparative studies of the distribution of pharmacogenetic polymorphisms in native Japanese versus their Brazilian-born descendants. Functional polymorphisms in genes that modulate drug disposition (CYP2C9, CYP2C19 and GSTM3) or response (VKORC1) and that differ significantly in frequency in native Japanese versus Brazilians with no Japanese ancestry were selected for the present study. Healthy subjects (200 native Japanese and 126 first-generation Japanese descendants) living in agricultural colonies were enrolled. Individual DNA was genotyped using RFLP (GSTM3*A/B) or TaqMan Detection System assays (CYP2C9*2 and *3; CYP2C19*2 and *3; VKORC1 3673G>A, 5808T>G, 6853G>C, and 9041G>A). No difference was detected in the frequency of these pharmacogenetic polymorphisms between native Japanese and first-generation Japanese descendants. In contrast, significant differences in the frequency of each polymorphism were observed between native or first-generation Japanese and Brazilians with no Japanese ancestry. The VKORC1 3673G>A, 6853G>C and 9041G>A single nucleotide polymorphisms were in linkage disequilibrium in both native and first-generation Japanese living in Brazil. The striking similarity in the frequency of clinically relevant pharmacogenetic polymorphisms between Brazilian-born Japanese descendants and native Japanese suggests that the former may be recruited for clinical trials designed to generate bridging data for the Japanese population in the context of the International Conference on Harmonization.
Resumo:
Caucasian renal transplant recipients from Queensland, Australia have the highest non-melanoma skin cancer (NMSC) risk worldwide. Although ultraviolet light (UVR) exposure is critical, genetic factors also appear important. We and others have shown that polymorphism in the glutathione S-transferases (GST) is associated with NMSC in UK recipients. However, the effect of high UVR exposure and differences in immunosuppressive regimen on these associations is unknown. In this study, we examined allelism in GSTM1, GSTM3, GSTT1 and GSTP1 in 361 Queensland renal transplant recipients. Data on squamous (SCC) and basal cell carcinoma (BCC), UVR/tobacco exposure and genotype were obtained. Associations with both NMSC risk and numbers were examined using logistic and negative binomial regression, respectively. In the total group, GSTM1 AB [P = 0.049, rate ratio (RR) = 0.23] and GSTM3 AA (P = 0.015, RR = 0.50) were associated with fewer SCC. Recipients were then stratified by prednisolone dose (less than or equal to7 versus >7 mg/day). In the low-dose group, GSTT1 null (P = 0.006, RR = 0.20) and GSTP1 Val/Val (P = 0.021, RR = 0.20) were associated with SCC numbers. In contrast, in the high-dose group, GSTM1 AB (P = 0.009, RR = 0.05), GSTM3 AB (P = 0.042, RR = 2.29) and BB (P = 0.014, RR = 5.31) and GSTP1 Val/Val (P = 0.036, RR = 2.98) were associated with SCC numbers. GSTM1 AB (P = 0.016) and GSTP1 Val/Val (P = 0.046) were also associated with fewer BCC in this group. GSTP1 associations were strongest in recipients with lower UVR/tobacco exposure. The data confirm our UK findings, suggesting that protection against UVR-induced oxidative stress is important in NMSC development in recipients, but that this effect depends on the immunosuppressant regimen.
Resumo:
To evaluate associations between polymorphisms of the N-acetyltransferase 2 (NAT2), human 8-oxoguanine glycosylase 1 (hOGG1) and X-ray repair cross-complementing protein 1 (XRCC1) genes and risk of upper aerodigestive tract (UADT) cancer. A case-control study involving 117 cases and 224 controls was undertaken. The NAT2 gene polymorphisms were genotyped by automated sequencing and XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms were determined by Polymerase Chain Reaction followed by Restriction Fragment Length Polymorphism (PCR-RFLP) methods. Slow metabolization phenotype was significantly associated as a risk factor for the development of UADT cancer (p=0.038). Furthermore, haplotype of slow metabolization was also associated with UADT cancer (p=0.014). The hOGG1 Ser326Cys polymorphism (CG or GG vs. CC genotypes) was shown as a protective factor against UADT cancer in moderate smokers (p=0.031). The XRCC1 Arg399Gln polymorphism (GA or AA vs. GG genotypes), in turn, was a protective factor against UADT cancer only among never-drinkers (p=0.048). Interactions involving NAT2, XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms may modulate the risk of UADT cancer in this population.
Resumo:
Intronic thyroid-stimulating hormone receptor polymorphisms have been associated with the risk for both Graves' disease and Graves' ophthalmopathy, but results have been inconsistent among different populations. We aimed to investigate the influence of thyroid-stimulating hormone receptor intronic polymorphisms in a large well-characterized population of GD patients. We studied 279 Graves' disease patients (231 females and 48 males, 39.80 ± 11.69 years old), including 144 with Graves' ophthalmopathy, matched to 296 healthy control individuals. Thyroid-stimulating hormone receptor genotypes of rs179247 and rs12885526 were determined by Real Time PCR TaqMan(®) SNP Genotyping. A multivariate analysis showed that the inheritance of the thyroid-stimulating hormone receptor AA genotype for rs179247 increased the risk for Graves' disease (OR = 2.821; 95 % CI 1.595-4.990; p = 0.0004), whereas the thyroid-stimulating hormone receptor GG genotype for rs12885526 increased the risk for Graves' ophthalmopathy (OR = 2.940; 95 % CI 1.320-6.548; p = 0.0083). Individuals with Graves' ophthalmopathy also presented lower mean thyrotropin receptor antibodies levels (96.3 ± 143.9 U/L) than individuals without Graves' ophthalmopathy (98.3 ± 201.9 U/L). We did not find any association between the investigated polymorphisms and patients clinical features or outcome. We demonstrate that thyroid-stimulating hormone receptor intronic polymorphisms are associated with the susceptibility to Graves' disease and Graves' ophthalmopathy in the Brazilian population, but do not appear to influence the disease course.
Resumo:
The role of key cell cycle regulation genes such as, CDKN1B, CDKN2A, CDKN2B, and CDKN2C in sporadic medullary thyroid carcinoma (s-MTC) is still largely unknown. In order to evaluate the influence of inherited polymorphisms of these genes on the pathogenesis of s-MTC, we used TaqMan SNP genotyping to examine 45 s-MTC patients carefully matched with 98 controls. A multivariate logistic regression analysis demonstrated that CDKN1B and CDKN2A genes were related to s-MTC susceptibility. The rs2066827*GT+GG CDKN1B genotype was more frequent in s-MTC patients (62.22%) than in controls (40.21%), increasing the susceptibility to s-MTC (OR=2.47; 95% CI=1.048-5.833; P=0.038). By contrast, the rs11515*CG+GG of CDKN2A gene was more frequent in the controls (32.65%) than in patients (15.56%), reducing the risk for s-MTC (OR=0.174; 95% CI=0.048-0.627; P=0.0075). A stepwise regression analysis indicated that two genotypes together could explain 11% of the total s-MTC risk. In addition, a relationship was found between disease progression and the presence of alterations in the CDKN1A (rs1801270), CDKN2C (rs12885), and CDKN2B (rs1063192) genes. WT rs1801270 CDKN1A patients presented extrathyroidal tumor extension more frequently (92%) than polymorphic CDKN1A rs1801270 patients (50%; P=0.0376). Patients with the WT CDKN2C gene (rs12885) presented larger tumors (2.9±1.8 cm) than polymorphic patients (1.5±0.7 cm; P=0.0324). On the other hand, patients with the polymorphic CDKN2B gene (rs1063192) presented distant metastases (36.3%; P=0.0261). In summary, we demonstrated that CDKN1B and CDKN2A genes are associated with susceptibility, whereas the inherited genetic profile of CDKN1A, CDKN2B, and CDKN2C is associated with aggressive features of tumors. This study suggests that profiling cell cycle genes may help define the risk and characterize s-MTC aggressiveness.
Resumo:
Mesangial cells subject to high extracellular glucose concentrations, as occur in hyperglycaemic states, are unable to down regulate glucose influx, resulting in intracellular activation of deleterious biochemical pathways. A high expression of GLUT1 participates in the development of diabetic glomerulopathy. Variants in the gene encoding GLUT1 (SLC2A1) have been associated to this diabetic complication. The aim of this study was to test whether polymorphisms in SLC2A1 confer susceptibility to diabetic nephropathy (DN) in Brazilian type 1 diabetes patients. Four polymorphisms (rs3820589, rs1385129, rs841847 and rs841848) were genotyped in a Brazilian cohort comprised of 452 patients. A prospective analysis was performed in 155 patients. Mean duration of follow-up was 5.6±2.4years and the incidence of renal events was 18.0%. The rs3820589 presented an inverse association with the prevalence of incipient DN (OR: 0.36, 95% CI: 0.16 - 0.80, p=0.01) and with progression to renal events (HR: 0.20; 95% CI: 0.03 - 0.70; p=0.009). AGGT and AGAC haplotypes were associated with the prevalence of incipient DN and the AGAC haplotype was also associated with the prevalence of established/advanced DN. In conclusion, rs3820589 in the SLC2A1 gene modulates the risk to DN in Brazilian patients with inadequate type 1 diabetes control.
Resumo:
Association studies between ADIPOR1 genetic variants and predisposition to type 2 diabetes (DM2) have provided contradictory results. We determined if two single nucleotide polymorphisms (SNP c.-8503G>A and SNP c.10225C>G) in regulatory regions of ADIPOR1 in 567 Brazilian individuals of European (EA; N = 443) or African (AfA; N = 124) ancestry from rural (quilombo remnants; N = 439) and urban (N = 567) areas. We detected a significant effect of ethnicity on the distribution of the allelic frequencies of both SNPs in these populations (EA: -8503A = 0.27; AfA: -8503A = 0.16; P = 0.001 and EA: 10225G = 0.35; AfA: 10225G = 0.51; P < 0.001). Neither of the polymorphisms were associated with DM2 in the case-control study in EA (SNP c.-8503G>A: DM2 group -8503A = 0.26; control group -8503A = 0.30; P = 0.14/SNP 10225C>G: DM2 group 10225G = 0.37; control group 10225G = 0.32; P = 0.40) and AfA populations (SNP c.-8503G>A: DM2 group -8503A = 0.16; control group -8503A = 0.15; P = 0.34/SNP 10225C>G: DM2 group 10225G = 0.51; control group 10225G = 0.52; P = 0.50). Similarly, none of the polymorphisms were associated with metabolic/anthropometric risk factors for DM2 in any of the three populations, except for HDL cholesterol, which was significantly higher in AfA heterozygotes (GC = 53.75 ± 17.26 mg/dL) than in homozygotes. We conclude that ADIPOR1 polymorphisms are unlikely to be major risk factors for DM2 or for metabolic/anthropometric measurements that represent risk factors for DM2 in populations of European and African ancestries.
Resumo:
Leptin, thyroglobulin and diacylglycerol O-acyltransferase play important roles in fat metabolism. Fat deposition has an influence on meat quality and consumers' choice. The aim of this study was to determine allele and genotype frequencies of polymorphisms of the bovine genes, which encode leptin (LEP), thyroglobulin (TG) and diacylglycerol O-acyltransferase (DGAT1). A further objective was to establish the effects of these polymorphisms on meat characteristics. We genotyped 147 animals belonging to the Nelore (Bos indicus), Canchim (5/8 Bos taurus + 3/8 Bos indicus), Rubia Gallega X Nelore (1/2 Bos taurus + 1/2 Bos indicus), Brangus Three-way cross (9/16 Bos taurus + 7/16 Bos indicus) and Braunvieh Three-way cross (3/4 Bos taurus + 1/4 Bos indicus) breeds. Backfat thickness, total lipids, marbling score, ribeye area and shear force were fitted, using the General Linear Model (GLM) procedure of the SAS software. The least square means of genotypes and genetic groups were compared using Tukey's test. Allele frequencies vary among the genetic groups, depending on Bos indicus versus Bos taurus influence. The LEP polymorphism segregates in pure Bos indicus Nelore animals, which is a new finding. The T allele of TG is fixed in Nelore, and DGAT1 segregates in all groups, but the frequency of allele A is lower in Nelore animals. The results showed no association between the genotypes and traits studied, but a genetic group effect on these traits was found. So, the genetic background remains relevant for fat deposition and meat tenderness, but the gene markers developed for Bos taurus may be insufficient for Bos indicus.
Resumo:
Background: Recent studies have reported the clinical importance of CYP2C19 and ABCB1 polymorphisms in an individualized approach to clopidogrel treatment. The aims of this study were to evaluate the frequencies of CYP2C19 and ABCB1 polymorphisms and to identify the clopidogrel-predicted metabolic phenotypes according to ethnic groups in a sample of individuals representative of a highly admixtured population. Methods: One hundred and eighty-three Amerindians and 1,029 subjects of the general population of 4 regions of the country were included. Genotypes for the ABCB1c.C3435T (rs1045642), CYP2C19*2 (rs4244285), CYP2C19*3 (rs4986893), CYP2C19*4 (rs28399504), CYP2C19*5 (rs56337013), and CYP2C19*17 (rs12248560) polymorphisms were detected by polymerase chain reaction followed by high resolution melting analysis. The CYP2C19*3, CYP2C19*4 and CYP2C19*5 variants were genotyped in a subsample of subjects (300 samples randomly selected). Results: The CYP2C19*3 and CYP2C19*5 variant alleles were not detected and the CYP2C19*4 variant allele presented a frequency of 0.3%. The allelic frequencies for the ABCB1c.C3435T, CYP2C19*2 and CYP2C19*17 polymorphisms were differently distributed according to ethnicity: Amerindian (51.4%, 10.4%, 15.8%); Caucasian descent (43.2%, 16.9%, 18.0%); Mulatto (35.9%, 16.5%, 21.3%); and African descent (32.8%, 20.2%, 26.3%) individuals, respectively. As a result, self-referred ethnicity was able to predict significantly different clopidogrel-predicted metabolic phenotypes prevalence even for a highly admixtured population. Conclusion: Our findings indicate the existence of inter-ethnic differences in the ABCB1 and CYP2C19 variant allele frequencies in the Brazilian general population plus Amerindians. This information could help in stratifying individuals from this population regarding clopidogrel-predicted metabolic phenotypes and design more cost-effective programs towards individualization of clopidogrel therapy.
Resumo:
Interethnic differences exist in disease prevalence, especially with regard to cancer and cardiovascular diseases, which involve altered expression or activity of matrix metalloproteinases (MMPs). The hypothesis being tested in this study is that interethnic differences exist between blacks and whites with regard to the distribution of genetic variants of MMP polymorphisms and haplotypes. We examined the distribution of polymorphisms of MMP-2 and MMP-9 genes in 177 black and 140 white subjects. We studied the following polymorphisms: the C(-1306)T in the promoter of the MMP-2 gene, the C(-1562)T and a microsatellite -90(CA)(14-24) in the promoter, and the Q279R in exon 6 of the MMP-9 gene. We have also compared our results with those from Hapmap or Seattle SNPs Projects and estimated the haplotype frequency in these two ethnic groups. The ""C'' allele for the C(-1306)T polymorphism was more common in blacks (91.5%) than in whites (80.4%; p<0.0001). The ""T'' allele for the C(-1562)T polymorphism was more common in blacks (15.0%) than in whites (8.9%; p=0.0279), as well as the alleles with >21 repeats for the -90(CA)(14-24) were more common in blacks than in whites (61.9% in blacks and 49.3% in whites; p=0.0017). We found no interethnic differences for the Q279R polymorphism. Moreover, two haplotypes that combine ""detrimental'' alleles were found at higher frequencies in blacks than in whites (31% vs. 16.4%, respectively; p<0.05). The interethnic differences being reported here replicate those previously found with smaller number of subjects in the Hapmap or Seattle SNPs data and may help explain the higher prevalence of cancer and cardiovascular diseases in blacks compared with whites. Our findings suggest a proportional significance of these polymorphisms in each ethnic group.
Resumo:
Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein produced mostly in endothelial cells and its transcription is regulated by a variety of growth factors and cytokines. VEGF plays many relevant roles, and three functional polymorphisms in the promoter region of the VEGF gene (C-2578A, G-1154A, and G-634C) have been associated with disease conditions. Although some studies suggest that interethnic differences exist in the distribution of these variants, no previous study has examined this hypothesis in admixed populations. We examined the distribution of these three clinically relevant VEGF single-nucleotide polymorphisms in 175 white and 185 black subjects. We have also estimated the haplotype distribution and assessed associations between these variants. Although the A-2578 and A-1154 variants were more common in whites (39% and 29%, respectively) than in blacks (29% and 16%, respectively; both p < 0.05), no significant interethnic differences were found with regards to the G-634C polymorphism. While the haplotype including the C-2578, G-1154, and G-634 variants was the most common in both ethnic groups, it was more common in blacks than in whites (p < 0.05). The haplotype including the C-2578, A-1154, and G-634 alleles and the haplotype including the C-2578, A-1154, and C-634 alleles were more common in whites than in blacks (both p < 0.05). These results show marked interethnic differences in the distribution of genetic variants of VEGF that may explain, at least in part, interethnic disparities in the susceptibility to cardiovascular diseases.
Resumo:
The main purpose of this research was to analyze the relation of the genetic polymorphisms frequently expressed by antigen-presenting cells, erythrocytes and malaria susceptibility/resistance with the human malaria infection cases. The sample used consisted of 23 Plasmodium vivax ( Pv)- and P. falciparum ( Pf)-infected patients, and 21 healthy individuals as a control group, from the Baixo Amazonas population in Para, Brazil. The Asp299Gly polymorphisms in the Toll-like receptor 4 ( TLR4), and Gly42Asp, Arg89Cys, Ala100Thr, and T-33C in the Duffy gene ( FY) were analyzed by restriction fragment length polymorphism-polymerase chain reaction. The Lys1590Glu and Arg1601Gly polymorphisms in the complement receptor type 1 (CR1) were analyzed by DNA sequencing. According to the results obtained and statistical analysis considering a significance level or alpha = 0.01, we conclude that the low heterozygote frequency (2.27%) for the Asp299Gly mutation, detected in the TLR4 gene, is not related to the Pv and Pf infections in the patients analyzed. Also, the promoter region GATA-1 analysis of the FY gene in the Pv-infected patients showed that the heterozygote frequency for the T-33C mutation (11.36% of the infected patients and 20.45% of the control patients) is not related to infection resistance. Regarding the CR1 gene, the observed heterozygote frequency (9.09%) for the Arg1601Gly mutation in Pf-infected patients when compared to heterozygote frequency in the control group (18.18%) suggests that there is no correlation with infection resistance.
Resumo:
The TP53 tumor suppressor gene codifies a protein responsible for preventing cells with genetic damage from growing and dividing by blocking cell growth or apoptosis pathways. A common single nucleotide polymorphism (SNP) in TP53 codon 72 (Arg72Pro) induces a 15-fold decrease of apoptosis-inducing ability and has been associated with susceptibility to human cancers. Recently, another TP53 SNP at codon 47 (Pro47Ser) was reported to have a low apoptosis-inducing ability; however, there are no association studies between this SNP and cancer. Aiming to study the role of TP53 Pro47Ser and Arg72Pro on glioma susceptibility and oncologic prognosis of patients, we investigated the genotype distribution of these SNPs in 94 gliomas (81 astrocytomas, 8 ependymomas and 5 oligodendrogliomas) and in 100 healthy subjects by the polymerase chain reaction-restriction fragment length polymorphism approach. Chi-square and Fisher exact test comparisons for genotype distributions and allele frequencies did not reveal any significant difference between patients and control groups. Overall and disease-free survivals were calculated by the Kaplan-Meier method, and the log-rank test was used for comparisons, but no significant statistical difference was observed between the two groups. Our data suggest that TP53 Pro47Ser and Arg72Pro SNPs are not involved either in susceptibility to developing gliomas or in patient survival, at least in the Brazilian population.