981 resultados para GROWTH-RETARDATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXTO: O retardo do crescimento intra-uterino (RCIU) continua sendo importante problema em perinatologia neste final de século. A natureza do agente etiológico, o período da gestação em que ocorreu o insulto e a sua duração influenciam o tipo de RCIU. OBJETIVO: Estudar a fisiopatologia do retardo de crescimento intrauterino (RCIU) em ratas, decorrente da restrição protéico-calórica materna, em relação à evolução do pâncreas fetal e placenta entre o 18o e 21o dias de prenhez. TIPO DE ESTUDO: Ensaio clínico randomizado em animal de laboratório. PARTICIPANTES: 41 ratas prenhes, normoglicêmicas, da raça Wistar. INTERVENÇÃO: Constituíram-se seis grupos experimentais: controle, com dieta ad libitum e cesárea, respectivamente, no 18º e 21º dias; grupos dieta restritiva a 25% introduzida no 1o dia da prenhez e cesárea no 18o e 21o dias; grupos com a mesma restrição, porém iniciada no 3o dia, com cesárea no 18o e 21o dias. VARIÁVEIS ESTUDADAS: Os recém-nascidos foram classificados, em relação à média mais ou menos um desvio padrão do grupo controle, em peso pequeno (PIP), adequado (AIP) e grande (GIP) para a idade de prenhez; as placentas foram pesadas e processadas para estudo histopatológico, incluindo morfologia e histoquímica, e os pâncreas fetais, para estudo morfológico. RESULTADOS: A desnutrição protéico-calórica materna causou RCIU após o 18o dia da prenhez. Antes desse período não ocorreu RCIU, porque a desnutrição materna diminuiu o número da prole e a placenta tornou-se vicariante. A restrição alimentar não interferiu com a morfologia do pâncreas fetal, e o estudo imunohistoquímico da placenta mostrou que, quando a restrição é introduzida no 1o dia de prenhez, os estoques de glicogênio também não sofrem alterações, diminuindo entre o 18o e 21o dias, como na prenhez normal. A restrição no 3o dia cursou com baixas concentrações de glicogênio placentário no 18o dia e desaparecimento no 21o dia. CONCLUSÃO: A fisiopatologia do RCIU, decorrente da restrição protéico-calórica materna em ratas, está relacionada com menor peso placentário e baixos estoques de glicogênio placentário.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a novel homozygous missense mutation in the ubiquinol-cytochrome c reductase synthesis-like (BCS1L) gene in two consanguineous Turkish families associated with deafness, Fanconi syndrome (tubulopathy), microcephaly, mental and growth retardation. All three patients presented with transitory metabolic acidosis in the neonatal period and development of persistent renal de Toni-Debré-Fanconi-type tubulopathy, with subsequent rachitis, short stature, microcephaly, sensorineural hearing impairment, mild mental retardation and liver dysfunction. The novel missense mutation c.142A>G (p.M48V) in BCS1L is located at a highly conserved region associated with sorting to the mitochondria. Biochemical analysis revealed an isolated complex III deficiency in skeletal muscle not detected in fibroblasts. Native polyacrylamide gel electrophoresis (PAGE) revealed normal super complex formation, but a shift in mobility of complex III most likely caused by the absence of the BCS1L-mediated insertion of Rieske Fe/S protein into complex III. These findings expand the phenotypic spectrum of BCS1L mutations, highlight the importance of biochemical analysis of different primary affected tissue and underline that neonatal lactic acidosis with multi-organ involvement may resolve after the newborn period with a relatively spared neurological outcome and survival into adulthood. CONCLUSION Mutation screening for BCS1L should be considered in the differential diagnosis of severe (proximal) tubulopathy in the newborn period. What is Known: • Mutations in BCS1L cause mitochondrial complex III deficiencies. • Phenotypic presentations of defective BCS1L range from Bjornstad to neonatal GRACILE syndrome. What is New: • Description of a novel homozygous mutation in BCS1L with transient neonatal acidosis and persistent de Toni-Debré-Fanconi-type tubulopathy. • The long survival of patients with phenotypic presentation of severe complex III deficiency is uncommon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The persistence of low birth weight and intrauterine growth retardation (IUGR) in the United States has puzzled researchers for decades. Much of the work that has been conducted on adverse birth outcomes has focused on low birth weight in general and not on IUGR. Studies that have examined IUGR specifically thus far have focused primarily on individual-level maternal risk factors. These risk factors have only been able to explain a small portion of the variance in IUGR. Therefore, recent work has begun to focus on community-level risk factors in addition to the individual-level maternal characteristics. This study uses Social Ecology to examine the relationship of individual and community-level risk factors and IUGR. Logistic regression was used to establish an individual-level model based on 155, 856 births recorded in Harris County, TX during 1999-2001. IUGR was characterized using a fetal growth ratio method with race/ethnic and sex specific mean birth weights calculated from national vital records. The spatial distributions of 114,460 birth records spatially located within the City of Houston were examined using choropleth, probability and density maps. Census tracts with higher than expected rates of IUGR and high levels of neighborhood disadvantage were highlighted. Neighborhood disadvantage was constructed using socioeconomic variables from the 2000 U.S. Census. Factor analysis was used to create a unified single measure. Lastly, a random coefficients model was used to examine the relationship between varying levels of community disadvantage, given the set of individual-level risk factors for 152,997 birth records spatially located within Harris County, TX. Neighborhood disadvantage was measured using three different indices adapted from previous work. The findings show that pregnancy-induced hypertension, previous preterm infant, tobacco use and insufficient weight gain have the highest association with IUGR. Neighborhood disadvantage only slightly further increases the risk of IUGR (OR 1.12 to 1.23). Although community level disadvantage only helped to explain a small proportion of the variance of IUGR, it did have a significant impact. This finding suggests that community level risk factors should be included in future work with IUGR and that more work needs to be conducted. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

gamma-Glutamyl transpeptidase (GGT) is an ectoenzyme that catalyzes the first step in the cleavage of glutathione (GSH) and plays an essential role in the metabolism of GSH and GSH conjugates of carcinogens, toxins, and eicosanoids. To learn more about the role of GGT in metabolism in vivo, we used embryonic stem cell technology to generate GGT-deficient (GGTm1/GGTm1) mice. GGT-deficient mice appear normal at birth but grow slowly and by 6 weeks are about half the weight of wild-type mice. They are sexually immature, develop cataracts, and have coats with a gray cast. Most die between 10 and 18 weeks. Plasma and urine GSH levels in the GGTm1/GGTm1 mice are elevated 6-fold and 2500-fold, respectively, compared with wild-type mice. Tissue GSH levels are markedly reduced in eye, liver, and pancreas. Plasma cyst(e)ine levels in GGTm1/GGTm1 mice are reduced to approximately 20% of wild-type mice. Oral administration of N-acetylcysteine to GGTm1/GGTm1 mice results in normal growth rates and partially restores the normal agouti coat color. These findings demonstrate the importance of GGT and the gamma-glutamyl cycle in cysteine and GSH homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

inorganic sulfate is required for numerous functions in mammalian physiology, and its circulating levels are proposed to be maintained by the Na+-SO42- cotransporter, (NaSi-1). To determine the role of NaSi-1 in sulfate homeostasis and the physiological consequences in its absence, we have generated a mouse lacking a functional NaSi-1 gene, Nas1. Serum sulfate concentration was reduced by >75% in Nas1(-/-) mice when compared with Nas1(+/+) mice. Nas1(-/-) mice exhibit increased urinary sulfate excretion, reduced renal and intestinal Na+-SO42- cotransport, and a general growth retardation. Nas1(-/-) mouse body weight was reduced by >20% when compared with Nas1(+/+) and Nas1(+/-) littermates at 2 weeks of age and remained so throughout adulthood. Nas1(-/-) females had a lowered fertility, with a 60% reduction in litter size. Spontaneous clonic seizures were observed in Nas1(-/-) mice from 8 months of age. These data demonstrate NaSi-1 is essential for maintaining sulfate homeostasis, and its expression is necessary for a wide range of physiological functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous study of 37 autopsied stillbirths with non-dysmorphic intrauterine growth retardation ( IUGR), 26 cases were associated with placental infarction, a morphologic marker of uteroplacental insufficiency. Nine of the 26 cases with both IUGR and placental infarction, where archival tissue was available, had grey matter ischaemic lesions that were subsequently identified as pontosubicular necrosis. This lesion is now regarded as a localized form of apoptosis. A further eight third trimester stillbirth cases with both IUGR and placental infarction were ascertained prospectively. Sixteen of these 17 cases showed pontosubicular apoptosis, identified morphologically and verified using activated caspase-3 and TUNEL. Five of the 17 cases showed apoptosis in the frontal or temporal cortex as well. In this current study, pontosubicular apoptosis was strongly associated with IUGR and placental infarction in third trimester stillborns, suggesting that uteroplacental insufficiency leading to chronic fetal hypoxaemia may cause cerebral apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Infants with fetal growth retardation (FGR) are prone to intestinal disorders. Objectives: Aim of the study was to determine the role of mucosal defense ability in formation of gut injury in infants with FGR. Materials and Methods: 44 premature infants who were admitted to the Neonatal Intensive Care Unit were divided into two groups: 20 infants with FGR (FGR group) and 24 appropriate-for-gestational age newborns (AGA group). Control group consisted of 22 premature infants who were delivered after uncomplicated pregnancy. Gut barrier function was evaluated by detecting serum intestinal trefoil factor (ITF) and intestinal fatty acid binding protein (IFABP). The level of serum IFABP and ITF was measured by using ELISA method. Results: FGR group showed significantly higher ITF concentration than AGA group on the first days of life (P ˂ 0.01). High level of ITF in the FGR group significantly declines up to 7th - 10th day of life (P ˂ 0.01). This reduction was accompanied by increase of IFABP which is a marker of ischemic intestinal mucosal injury. Correlation analyses showed that ITF had a negative correlation with IFABP. Conclusions: Infants with fetal growth retardation are characterized by a high level of ITF on the first days of life. This protects intestinal mucosa under hypoxic conditions. Its subsequent decline accompanied by an increase of IFABP reflects the depletion of Goblet cells to secret ITF causing damage to the integrity of intestinal mucosal barrier.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: This study aimed to document the growth patterns of a contemporary cohort of preterm infants born appropriate for gestational age (AGA). It was hypothesised that preterm AGA (PT-AGA) infants would display poorer growth than full-term AGA (FT-AGA) infants. Methods: Sixty-four PT-AGA infants and 64 FT-AGA infants were assessed at 0, 4, 8 and 12 months of corrected age (CA). Measurements of weight and length were recorded at each of the specified ages. Centers for Disease Control and Prevention growth data were used to calculate Z-scores for weight and length based on CA. Results: The mean length and weight Z-scores of PT-AGA infants were found to be significantly less than those of FT-AGA infants at term, 4, 8 and 12 months of CA (P < 0.001). The mean weight Z-score of PT-AGA infants was found to be less than their mean length Z-score at each time point, though the differences were not significant. Conclusions: The results of this study suggest that PT-AGA infants are likely to display poorer growth than FT-AGA infants until at least 1 year of CA. Long-term growth monitoring in this population is recommended. © 2008 The Authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gene-targeted disruption of Grg5, a mouse homologue of Drosophila groucho (gro), results in postnatal growth retardation in mice. The growth defect, most striking in approximately half of the Grg5 null mice, occurs during the first 4-5 weeks of age, but most mice recover retarded growth later. We used the nonlinear mixed-effects model to fit the growth data of wild-type, heterozygous, and Grg5 null mice. On the basis of preliminary evidence suggesting an interaction between Grg5 and the transcription factor Cbfa1/Runx2, critical for skeletal development, we further investigated the skeleton in the mice. A long bone growth plate defect was identified, which included shorter zones of proliferative and hypertrophic chondrocytes and decreased trabecular bone formation. This decreased trabecular bone formation is likely caused by a reduced recruitment of osteoblasts into the growth plate region of Grg5 null mice. Like the growth defect, the growth plate and trabecular bone abnormality improved as the mice grew older. The growth plate defect was associated with reduced Indian hedgehog expression and signaling. We suggest that Grg5, a transcriptional coregulator, modulates the activities of transcription factors, such as Cbfa1/Runx2 in vivo to affect Ihh expression and the function of long bone growth plates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We show that the application of a modest dc electrical field, about 4 V/cm, can significantly reduce grain growth in yttria-stabilized polycrystalline zirconia. These measurements were made by annealing samples, for 10 h at 1300°C, with and without an electrical field. The finding adds a new dimension to the role of applied electrical fields in sintering and superplasticity, phenomena that are critical to the net-shape processing of ceramics. Grain-growth retardation will considerably enhance the rates of sintering and superplasticity, leading to significant energy efficiencies in the processing of ceramics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90degrees and 180degrees is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress sigma(infinity) and electric field E-infinity or (sigma(infinity), E-infinity) is replaced by strain e and electric displacement D-infinity or (epsilon(infinity), D-infinity). Mixed conditions (sigma(infinity),D-infinity) and (epsilon(infinity),E-infinity) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (E-y(infinity),sigma(y)(infinity)) for negative E-y(infinity) and (D-y(infinity), epsilon(y)(infinity)) for positive D-y(infinity) while the mechanical conditions sigma(y)(infinity) or epsilon(y)infinity are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the effect of protein restriction with subsequent re-alimentation on nutrient utilization, hematological and biochemical changes of Indian major carp, Rohu (Labeo rohita H.), 150 acclimatized Rohu fingerlings (average 20.74 ± 0.13 g) divided into five experimental groups (30 fingerlings in each groups with three replications with 10 fingerlings in each) for experimental trial of 90 days using completely randomized design. Control group (T sub(CPR)) was fed with feed having 30% crude protein at 3% of body weight for 90 days trial period. Other experimental groups T sub(1PR) was alternatively 3 days fed with feed having 20% CP and 30% CP at 3% of body weight, T sub(2PR) was alternatively 7 days fed with feed having 20% CP and 30% CP at 3% of body weight, T sub(3PR) was alternatively 15 days fed with feed having 20% CP and 30% CP at 3% of body weight and T sub(4PR) was alternatively 25 days fed with feed having 20% CP and 30% CP at 3% of body weight during 90 days trial period with daily ration in two equal halves at morning and afternoon. It was noticed that retention of different nutrients was almost similar among all treatment groups indicated improvement of digestibility of nutrients might not be the mechanisms for recovery growth in carps. Increased percent feed intake of body weight (hyperphagia) (4.14 ± 0.30 or 4.94 ± 0.46 and 3.33 ± 0.29), improved specific growth rate (1.86 ± 0.09 or 2.26 ± 0.05 and 1.43 ± 0.01), absolute growth rate (1.57 ± 0.08 or 1.84 ± 0.18 and 1.36 ± 0.12), protein efficiency ratio (1.19 ± 0.11 or1.16 ± 0.12 and 1.05 ± 0.09) were the important mechanism showing better performance index (21.60 ± 1.09 or 23.80 ± 0.21 and 19.45 ± 0.37) through which the experimental groups which were protein restricted and re-alimented at 3 or 7 days alternatively during 90 days trial period could able to compensate the growth retardation and to catch up the final body weight of control (128.68 ± 11.53 g/f) but other experimental groups failed to compensate during 90 days trial period. Result of the present study indicated that deprived fish i.e., fish received alternate 3 or 7 days protein restriction and re-alimentation showed recovery growth had still lower values of Hb (10.21 ± 0.02, and 9.88 ± 0.04 g/dl), hematocrit value (30.62 ± 0.05 and 26.64 ± 0.11%), total erythrocytic count (3.40 ± 0.01 and 3.29 ± 0.01 X10super(6) mm³), plasma glucose (126.93 ± 0.20 and 126.67 ± 0.05 mg/dl), total plasma lipid (1.04 ± 0.01 and 1.02 ± 0.01 g/dl) and liver glycogen (290.10 ± 0.80 and 288.99 ± 0.95 mg/kg) in comparison to control (10.56 ± 0.08 g/dl, 31.68 ± 0.24%, 3.52 ± 0.03 X10super(6) mm³, 128.23 ± 0.25 mg/dl, 1.07 ± 0.01g/dl and 292.00 ± 0.23 mg/kg) at the end of 90 days trial but total plasma protein in deprived group was compensated with advancement of trial period. All hematological and biochemical parameters studied were proportionately lowered in the experimental group got higher degree of deprivation. These findings suggested that with the increase of trial length complete compensation of hematological and biochemical profiles of rohu might be achieved. The results indicated that the implementation of alternative 7 days low and high protein diet feeding during aquaculture of carps could make economize the operation through minimizing the feed input cost.