959 resultados para GROUP-4
Resumo:
The use of the sulfurdiimide RN=S=NR' (R = R' = SiMe3, 3) in reactions with group 4 metallocene bis(trimethylsilyl)-acetylene complexes of the type [Cp2M(L (eta(2)-Me3Si-C2SiMe3)] (1: M = Ti, no L; 2: M = Zr, L = pyridine) has led to the formation of four-membered metallacycles 4M containing the group 4 metal, nitrogen and sulfur. DFT calculations performed on compound 4Ti indicate that this complex is best described as a sigma-complex with cyclic delocalisation of the ring electrons. Moreover, pseudo-Jahn-Teller distortion plays a significant role in stabilising this complex.
Resumo:
A long-standing challenge in transition metal catalysis is selective C–C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C–C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.
The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C–C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal–carbene intermediates in F-T chemistry. It was found that C–C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C–C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.
A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C–H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.
Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.
Resumo:
Evidence for the stereochemical isomerization of a variety of ansa metallocene compounds is presented. For the scandocene allyl derivatives described here, we have established that the process is promoted by a variety of salts in both ether and hydrocarbon solvents and is not accelerated by light. A plausible mechanism based on an earlier proposal by Marks, et al., is offered as an explanation of this process. It involves coordination of anions and/or donor solvents to the metal center with cation assistance to encourage metalcyclopentadienyl bond heterolysis, rotation about the Si-Cp bond of the detached cyclopentadienide and recoordination of the opposite face. Our observations in some cases of thermodynamic racemic:meso ratios under the reaction conditions commonly used for the synthesis of the metallocene chlorides suggests that the interchange is faster than metallation, such that the composition of the reaction mixture is determined by thermodynamic, not kinetic, control in these cases.
Two new ansa-scandocene alkenyl compounds react with olefins resulting in the formation of η3-allyl complexes. Kinetics and labeling experiments indicate a tuck-in intermediate on the reaction pathway; in this intermediate the metal is bound to the carbon adjacent to the silyllinker in the rear of the metallocene wedge. In contrast, reaction of permethylscandocene alkenyl compounds with olefins results, almost exclusively, in vinylic C-H bond activation. It is proposed that relieving transition state steric interactions between the cyclopentadienyl rings and the olefin by either linking the rings together or using a larger lanthanide metal may allow for olefin coordination, stabilizing the transition state for allylic σ-bond metathesis.
A selectively isotopically labeled propylene, CH2CD(13CH3), was synthesized and its polymerization was carried out at low concentration in toluene solution using isospecific metallocene catalysts. Analysis of the NMR spectra (13C, 1H, and 2H) of the resultant polymers revealed that the production of stereoerrors through chain epimerization proceeds exclusively by the tertiaryalkyl mechanism. Additionally, enantiofacial inversion of the terminally unsaturated polymer chain occurs by a non-dissociative process. The implications of these results on the mechanism of olefin polymerization with these catalysts is discussed.
Resumo:
Group 4 complexes containing diphosphinoamide ligands [Ph2PNR](2)MCl2 (3: R = Bu-t, M = Ti; 4: R = Bu-t, M = Zr; 5: R = Ph, M = Ti; 6: R = Ph, M = Zr) were prepared by the reaction Of MCl4 (M = Ti; Zr) with the corresponding lithium phosphinoamides in ether or THF. The structure of [(Ph2PNBu)-Bu-t](2)TiCl2 (3) was determined by X-ray crystallography. The phosphinoamides functioned as eta(2)-coordination ligands in the solid state and the Ti-N bond length suggests it is a simple single bond. In the presence of modified methylaluminoxane or i-Bu3Al/Ph3BC(C6F5)(4), catalytic activity of up to 59.5 kg PE/mol cat h bar was observed.
Resumo:
Thin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems.
Resumo:
Background There has been an explosion in research into possible associations between periodontitis and various systemic diseases and conditions. Aim To review the evidence for associations between periodontitis and various systemic diseases and conditions, including chronic obstructive pulmonary disease (COPD), pneumonia, chronic kidney disease, rheumatoid arthritis, cognitive impairment, obesity, metabolic syndrome and cancer, and to document headline discussions of the state of each field. Periodontal associations with diabetes, cardiovascular disease and adverse pregnancy outcomes were not discussed by working group 4. Results Working group 4 recognized that the studies performed to date were largely cross-sectional or case-control with few prospective cohort studies and no randomized clinical trials. The best current evidence suggests that periodontitis is characterized by both infection and pro-inflammatory events, which variously manifest within the systemic diseases and disorders discussed. Diseases with at least minimal evidence of an association with periodontitis include COPD, pneumonia, chronic kidney disease, rheumatoid arthritis, cognitive impairment, obesity, metabolic syndrome and cancer. The working group agreed that there is insufficient evidence to date to infer causal relationships with the exception that organisms originating in the oral microbiome can cause lung infections. Conclusions The group was unanimous in their opinion that the reported associations do not imply causality, and establishment of causality will require new studies that fulfil the Bradford Hill or equivalent criteria. Precise and community-agreed case definitions of periodontal disease states must be implemented systematically to enable consistent and clearer interpretations of studies of the relationship to systemic diseases. The members of the working group were unanimous in their opinion that to develop data that best inform clinicians, investigators and the public, studies should focus on robust disease outcomes and avoid surrogate endpoints. It was concluded that because of the relative immaturity of the body of evidence for each of the purported relationships, the field is wide open and the gaps in knowledge are large. © 2013 European Federation of Periodontology and American Academy of Periodontology.
Resumo:
Results of the Dirac-Slater discrete variational calculations for the group 4, 5, and 6 highest chlorides including elements 104, 105, and 106 have shown that the groups are not identical with respect to trends in the electronic structure and bonding. The charge density distribution data show that notwithstanding the basic increase in covalency within the groups this increase diminishes in going from group 4 to group 6. As a result, E106Cl_6 will be less stable toward thermal decomposition than WCl_6, which is confirmed by an estimated low E106-Cl bond energy. \delta H_form equal to -90.3 ± 6 kcal/rnol is obtained for E106Cl_6 in the gas phase, which is indicative of a very low stability of this compound. The stability of the maximum oxidation state is shown to decrease in the direction E104(+4) > E105(+5) > E106(+6).
Resumo:
This is an interactive flash-based tutorial which attempts to teach the topic of legal concerns within HR departments. A quiz to test the user's knowledge is also provided.
Resumo:
This vessel contains the poster and artefact link for The Digital Dream Teams' project
Resumo:
An EdShare folder containing a collection of resources created on the subject area of past, present and future e-commerce trends. The primary resource is an interactive website and quiz, with a video commentary and supplementary flyer advertising the proposed resource is also included.
Resumo:
The Hox gene products are transcription factors involved in specifying regional identity along the anteroposterior body axis. In Drosophila, where these genes are known as HOM-C (Homeotic-complex) genes and where they have been most extensively studied, they are expressed in restricted domains along the anteroposterior axis with different anterior limits. Genetic analysis of a large number of gain- and loss-of-function alleles of these genes has revealed that these genes are important in specifying segmental identity at their anterior limits of expression. Furthermore, there is a functional dominance of posterior genes over anterior genes, such that posterior genes can dominantly specify their developmental programs in spite of the expression of more anterior genes in the same segment. In the mouse, there are four clusters of HOM-C genes, called Hox genes. Thus, there may be up to four genes, called paralogs, that are more highly homologous to each other and to their Drosophila homolog than they are to the other mouse Hox genes. The single mutants for two paralogous genes, hoxa-4 and hoxd-4, presented in this dissertation, are similar to several other mouse Hox mutants in that they show partial, incompletely penetrant homeotic transformations of vertebrae at their anterior limit of expression. These mutants were then bred with hoxb-4 mutants (Ramirez-Solis, et al. 1993) to generate the three possible double mutant combinations as well as the triple mutant. The skeletal phenotypes of these group 4 Hox compound mutants displayed clear alterations in regional identity, such that a nearly complete transformation towards the morphology of the first cervical vertebra occurs. These results suggest a certain degree of functional redundancy among paralogous genes in specifying regional identity. Furthermore, there was a remarkable dose-dependent increase in the number of vertebrae transformed to a first cervical vertebra identity, including the second through the fifth cervical vertebrae in the triple mutant. Thus, these genes are required in a larger anteroposterior domain than is revealed by the single mutant phenotypes alone, such that multiple mutations in these genes result in transformations of vertebrae that are not at their anterior limit of expression. ^