103 resultados para GPUs
Resumo:
This letter presents a new parallel method for hyperspectral unmixing composed by the efficient combination of two popular methods: vertex component analysis (VCA) and sparse unmixing by variable splitting and augmented Lagrangian (SUNSAL). First, VCA extracts the endmember signatures, and then, SUNSAL is used to estimate the abundance fractions. Both techniques are highly parallelizable, which significantly reduces the computing time. A design for the commodity graphics processing units of the two methods is presented and evaluated. Experimental results obtained for simulated and real hyperspectral data sets reveal speedups up to 100 times, which grants real-time response required by many remotely sensed hyperspectral applications.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
The application of compressive sensing (CS) to hyperspectral images is an active area of research over the past few years, both in terms of the hardware and the signal processing algorithms. However, CS algorithms can be computationally very expensive due to the extremely large volumes of data collected by imaging spectrometers, a fact that compromises their use in applications under real-time constraints. This paper proposes four efficient implementations of hyperspectral coded aperture (HYCA) for CS, two of them termed P-HYCA and P-HYCA-FAST and two additional implementations for its constrained version (CHYCA), termed P-CHYCA and P-CHYCA-FAST on commodity graphics processing units (GPUs). HYCA algorithm exploits the high correlation existing among the spectral bands of the hyperspectral data sets and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. The proposed P-HYCA and P-CHYCA implementations have been developed using the compute unified device architecture (CUDA) and the cuFFT library. Moreover, this library has been replaced by a fast iterative method in the P-HYCA-FAST and P-CHYCA-FAST implementations that leads to very significant speedup factors in order to achieve real-time requirements. The proposed algorithms are evaluated not only in terms of reconstruction error for different compressions ratios but also in terms of computational performance using two different GPU architectures by NVIDIA: 1) GeForce GTX 590; and 2) GeForce GTX TITAN. Experiments are conducted using both simulated and real data revealing considerable acceleration factors and obtaining good results in the task of compressing remotely sensed hyperspectral data sets.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
As simulações que pretendam modelar fenómenos reais com grande precisão em tempo útil exigem enormes quantidades de recursos computacionais, sejam estes de processamento, de memória, ou comunicação. Se até há pouco tempo estas capacidades estavam confinadas a grandes supercomputadores, com o advento dos processadores multicore e GPUs manycore os recursos necessários para este tipo de problemas estão agora acessíveis a preços razoáveis não só a investigadores como aos utilizadores em geral. O presente trabalho está focado na otimização de uma aplicação que simula o comportamento dinâmico de materiais granulares secos, um problema do âmbito da Engenharia Civil, mais especificamente na área da Geotecnia, na qual estas simulações permitem por exemplo investigar a deslocação de grandes massas sólidas provocadas pelo colapso de taludes. Assim, tem havido interesse em abordar esta temática e produzir simulações representativas de situações reais, nomeadamente por parte do CGSE (Australian Research Council Centre of Excellence for Geotechnical Science and Engineering) da Universidade de Newcastle em colaboração com um membro da UNIC (Centro de Investigação em Estruturas de Construção da FCT/UNL) que tem vindo a desenvolver a sua própria linha de investigação, que se materializou na implementação, em CUDA, de um algoritmo para GPUs que possibilita simulações de sistemas com um elevado número de partículas. O trabalho apresentado consiste na otimização, assente na premissa da não alteração (ou alteração mínima) do código original, da supracitada implementação, de forma a obter melhorias significativas tanto no tempo global de execução da aplicação, como no aumento do número de partículas a simular. Ao mesmo tempo, valida-se a formulação proposta ao conseguir simulações que refletem, com grande precisão, os fenómenos físicos. Com as otimizações realizadas, conseguiu-se obter uma redução de cerca de 30% do tempo inicial cumprindo com os requisitos de correção e precisão necessários.
Resumo:
En el projecte s’ha dut a terme un estudi sobre la tecnologia que aporten les targetes gràfiques (GPU) dins l’àmbit de programació d’aplicacions que tradicionalment eren executades en la CPU o altrament conegut com a GPGPU. S’ha fet una anàlisi profunda del marc tecnològic actual explicant part del maquinari de les targetes gràfiques i de què tracta el GPGPU. També s’han estudiat les diferents opcions que existeixen per poder realitzar els tests de rendiment que permetran avaluar el programari, quin programari està dissenyat per ser executat amb aquesta tecnologia i quin és el procediment a seguir per poder utilitzar-los. S’han efectuat diverses proves per avaluar el rendiment de programari dissenyat o compatible d’executar en la GPU, realitzant taules comparatives amb els temps de còmput. Un cop finalitzades les diferents proves del programari, es pot concloure que no tota aplicació processada en la GPU aporta un benefici. Per poder veure millores és necessari que l’aplicació reuneixi una sèrie de requisits com que disposi d’un elevat nombre d’operacions que es puguin realitzar en paral lel, que no existeixin condicionants per a l’execució de les operacions i que sigui un procés amb càlcul aritmètic intensiu.
Resumo:
Las herramientas de análisis de secuencias genómicas permiten a los biólogos identificar y entender regiones fundamentales que tienen implicación en enfermedades genéticas. Actualmente existe una necesidad de dotar al ámbito científico de herramientas de análisis eficientes. Este proyecto lleva a cabo una caracterización y análisis del rendimiento de algoritmos utilizados en la comparación de secuencias genómicas completas, y ejecutadas en arquitecturas MultiCore y ManyCore. A partir del análisis se evalúa la idoneidad de este tipo de arquitecturas para resolver el problema de comparar secuencias genómicas. Finalmente se propone una serie de modificaciones en las implementaciones de estos algoritmos con el objetivo de mejorar el rendimiento.
Resumo:
Las aplicaciones de alineamiento de secuencias son una herramienta importante para la comunidad científica. Estas aplicaciones bioinformáticas son usadas en muchos campos distintos como pueden ser la medicina, la biología, la farmacología, la genética, etc. A día de hoy los algoritmos de alineamiento de secuencias tienen una complejidad elevada y cada día tienen que manejar un volumen de datos más grande. Por esta razón se deben buscar alternativas para que estas aplicaciones sean capaces de manejar el aumento de tamaño que los bancos de secuencias están sufriendo día a día. En este proyecto se estudian y se investigan mejoras en este tipo de aplicaciones como puede ser el uso de sistemas paralelos que pueden mejorar el rendimiento notablemente.
Resumo:
A graphical processing unit (GPU) is a hardware device normally used to manipulate computer memory for the display of images. GPU computing is the practice of using a GPU device for scientific or general purpose computations that are not necessarily related to the display of images. Many problems in econometrics have a structure that allows for successful use of GPU computing. We explore two examples. The first is simple: repeated evaluation of a likelihood function at different parameter values. The second is a more complicated estimator that involves simulation and nonparametric fitting. We find speedups from 1.5 up to 55.4 times, compared to computations done on a single CPU core. These speedups can be obtained with very little expense, energy consumption, and time dedicated to system maintenance, compared to equivalent performance solutions using CPUs. Code for the examples is provided.
Resumo:
Simulating spiking neural networks is of great interest to scientists wanting to model the functioning of the brain. However, large-scale models are expensive to simulate due to the number and interconnectedness of neurons in the brain. Furthermore, where such simulations are used in an embodied setting, the simulation must be real-time in order to be useful. In this paper we present NeMo, a platform for such simulations which achieves high performance through the use of highly parallel commodity hardware in the form of graphics processing units (GPUs). NeMo makes use of the Izhikevich neuron model which provides a range of realistic spiking dynamics while being computationally efficient. Our GPU kernel can deliver up to 400 million spikes per second. This corresponds to a real-time simulation of around 40 000 neurons under biologically plausible conditions with 1000 synapses per neuron and a mean firing rate of 10 Hz.
Resumo:
SAFT techniques are based on the sequential activation, in emission and reception, of the array elements and the post-processing of all the received signals to compose the image. Thus, the image generation can be divided into two stages: (1) the excitation and acquisition stage, where the signals received by each element or group of elements are stored; and (2) the beamforming stage, where the signals are combined together to obtain the image pixels. The use of Graphics Processing Units (GPUs), which are programmable devices with a high level of parallelism, can accelerate the computations of the beamforming process, that usually includes different functions such as dynamic focusing, band-pass filtering, spatial filtering or envelope detection. This work shows that using GPU technology can accelerate, in more than one order of magnitude with respect to CPU implementations, the beamforming and post-processing algorithms in SAFT imaging. ©2009 IEEE.
Resumo:
Huge image collections are becoming available lately. In this scenario, the use of Content-Based Image Retrieval (CBIR) systems has emerged as a promising approach to support image searches. The objective of CBIR systems is to retrieve the most similar images in a collection, given a query image, by taking into account image visual properties such as texture, color, and shape. In these systems, the effectiveness of the retrieval process depends heavily on the accuracy of ranking approaches. Recently, re-ranking approaches have been proposed to improve the effectiveness of CBIR systems by taking into account the relationships among images. The re-ranking approaches consider the relationships among all images in a given dataset. These approaches typically demands a huge amount of computational power, which hampers its use in practical situations. On the other hand, these methods can be massively parallelized. In this paper, we propose to speedup the computation of the RL-Sim algorithm, a recently proposed image re-ranking approach, by using the computational power of Graphics Processing Units (GPU). GPUs are emerging as relatively inexpensive parallel processors that are becoming available on a wide range of computer systems. We address the image re-ranking performance challenges by proposing a parallel solution designed to fit the computational model of GPUs. We conducted an experimental evaluation considering different implementations and devices. Experimental results demonstrate that significant performance gains can be obtained. Our approach achieves speedups of 7x from serial implementation considering the overall algorithm and up to 36x on its core steps.
Resumo:
En el presente documento se hablará acerca del desarrollo de un proyecto para la mejora de un programa de análisis de señales; con ese fin, se hará uso de técnicas de optimización del software y de tecnologías de aceleración, mediante el aprovechamiento del paralelismo del programa. Además se hará un análisis de acerca del uso de dos tecnologías basadas en diferentes paradigmas de programación paralela; una mediante múltiples hilos con memoria compartida y la otra mediante el uso de GPUs como dispositivos de coprocesamiento. This paper will talk about the development of a Project to improve a program that does signals analysis; to that end, it will make use of software optimization techniques and acceleration technologies by exploiting parallelism in the program. In Addition will be done an analysis on the use of two technologies based on two different paradigms; one using multiple threads with shared memory and the other using GPU as co-processing devices.
Resumo:
This approach aims at aligning, unifying and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. A sentiment lexicon is a critical and essential resource for tagging subjective corpora on the web or elsewhere. In many situations, the multilingual property of the sentiment lexicon is important because the writer is using two languages alternately in the same text, message or post. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and -1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and the UnifiedMetrics procedure for CPU and GPU, respectively.
Resumo:
El objetivo de este proyecto es evaluar la mejora de rendimiento que aporta la paralelización de algoritmos de procesamiento de imágenes, para su ejecución en una tarjeta gráfica. Para ello, una vez seleccionados los algoritmos a estudio, fueron desarrollados en lenguaje C++ bajo el paradigma secuencial. A continuación, tomando como base estas implementaciones, se paralelizaron siguiendo las directivas de la tecnología CUDA (Compute Unified Device Architecture) desarrollada por NVIDIA. Posteriormente, se desarrolló un interfaz gráfico de usuario en Visual C#, para una utilización más sencilla de la herramienta. Por último, se midió el rendimiento de cada uno de los algoritmos, en términos de tiempo de ejecución paralela y speedup, mediante el procesamiento de una serie de imágenes de distintos tamaños.---ABSTRACT---The aim of this Project is to evaluate the performance improvement provided by the parallelization of image processing algorithms, which will be executed on a graphics processing unit. In order to do this, once the algorithms to study were selected, each of them was developed in C++ under sequential paradigm. Then, based on these implementations, these algorithms were implemented using the compute unified device architecture (CUDA) programming model provided by NVIDIA. After that, a graphical user interface (GUI) was developed to increase application’s usability. Finally, performance of each algorithm was measured in terms of parallel execution time and speedup by processing a set of images of different sizes.