908 resultados para GPS tracking data
Resumo:
Neighbourhood like the concept of liveability is usually measured by either subjective indicators using surveys of residents’ perceptions or by objective means using secondary data or relative weights for objective indicators of the urban environment. Rarely, have objective and subjective indicators been related to one another in order to understand what constitutes a liveable urban neighbourhood both spatially and behaviourally. This paper explores the use of qualitative (diaries, in-depth interviews) and quantitative (Global Positioning Systems, Geographical Information Systems mapping) liveability research data to examine the perceptions and behaviour of 12 older residents living in six high density urban areas of Brisbane. Older urban Australians are one of the two principal groups highly attracted to high density urban living. The strength of the relationship between the qualitative and quantitative measures was examined. Results of the research indicate a weak relationship between subjective and objective indicators. Linking the two methods (quantitative and qualitative) is important in obtaining a greater understanding of human behaviour and the lived world of older urban Australians and in providing a wider picture of the urban neighbourhood.
Resumo:
The advancement of GPS technology enables GPS devices not only to be used as orientation and navigation tools, but also to track travelled routes. GPS tracking data provides essential information for a broad range of urban planning applications such as transportation routing and planning, traffic management and environmental control. This paper describes on processing the data that was collected by tracking the cars of 316 volunteers over a seven-week period. The detailed information is extracted. The processed data is further connected to the underlying road network by means of maps. Geographical maps are applied to check how the car-movements match the road network. The maps capture the complexity of the car-movements in the urban area. The results show that 90% of the trips on the plane match the road network within a tolerance.
Resumo:
The advancement of GPS technology has made it possible to use GPS devices as orientation and navigation tools, but also as tools to track spatiotemporal information. GPS tracking data can be broadly applied in location-based services, such as spatial distribution of the economy, transportation routing and planning, traffic management and environmental control. Therefore, knowledge of how to process the data from a standard GPS device is crucial for further use. Previous studies have considered various issues of the data processing at the time. This paper, however, aims to outline a general procedure for processing GPS tracking data. The procedure is illustrated step-by-step by the processing of real-world GPS data of car movements in Borlänge in the centre of Sweden.
Resumo:
GPS technology has been embedded into portable, low-cost electronic devices nowadays to track the movements of mobile objects. This implication has greatly impacted the transportation field by creating a novel and rich source of traffic data on the road network. Although the promise offered by GPS devices to overcome problems like underreporting, respondent fatigue, inaccuracies and other human errors in data collection is significant; the technology is still relatively new that it raises many issues for potential users. These issues tend to revolve around the following areas: reliability, data processing and the related application. This thesis aims to study the GPS tracking form the methodological, technical and practical aspects. It first evaluates the reliability of GPS based traffic data based on data from an experiment containing three different traffic modes (car, bike and bus) traveling along the road network. It then outline the general procedure for processing GPS tracking data and discuss related issues that are uncovered by using real-world GPS tracking data of 316 cars. Thirdly, it investigates the influence of road network density in finding optimal location for enhancing travel efficiency and decreasing travel cost. The results show that the geographical positioning is reliable. Velocity is slightly underestimated, whereas altitude measurements are unreliable.Post processing techniques with auxiliary information is found necessary and important when solving the inaccuracy of GPS data. The densities of the road network influence the finding of optimal locations. The influence will stabilize at a certain level and do not deteriorate when the node density is higher.
Resumo:
Background. Governments face a significant challenge to ensure that community environments meet the mobility needs of an ageing population. Therefore, it is critical to investigate the effect of suburban environments on the choice of transportation and its relation to participation and active ageing. Objective. This research explores if and how suburban environments impact older people’s mobility and their use of different modes of transport. Methods. Data derived from GPS tracking, travel diaries, brief questionnaires, and semistructured interviews were gathered from thirteen people aged from 56 to 87 years, living in low-density suburban environments in Brisbane, Australia. Results. The suburban environment influenced the choice of transportation and out-of-home mobility. Both walkability and public transportation (access and usability) impact older people’s transportation choices. Impracticality of active and public transportation within suburban environments creates car dependency in older age. Conclusion. Suburban environments often create barriers to mobility, which impedes older people’s engagement in their wider community and ability to actively age in place. Further research is needed to develop approaches towards age-friendly suburban environments which will encourage older people to remain active and engaged in older age.
Resumo:
To date, the processing of wildlife location data has relied on a diversity of software and file formats. Data management and the following spatial and statistical analyses were undertaken in multiple steps, involving many time-consuming importing/exporting phases. Recent technological advancements in tracking systems have made large, continuous, high-frequency datasets of wildlife behavioral data available, such as those derived from the global positioning system (GPS) and other animal-attached sensor devices. These data can be further complemented by a wide range of other information about the animals’ environment. Management of these large and diverse datasets for modelling animal behaviour and ecology can prove challenging, slowing down analysis and increasing the probability of mistakes in data handling. We address these issues by critically evaluating the requirements for good management of GPS data for wildlife biology. We highlight that dedicated data management tools and expertise are needed. We explore current research in wildlife data management. We suggest a general direction of development, based on a modular software architecture with a spatial database at its core, where interoperability, data model design and integration with remote-sensing data sources play an important role in successful GPS data handling.
Resumo:
GPS tracking of mobile objects provides spatial and temporal data for a broad range of applications including traffic management and control, transportation routing and planning. Previous transport research has focused on GPS tracking data as an appealing alternative to travel diaries. Moreover, the GPS based data are gradually becoming a cornerstone for real-time traffic management. Tracking data of vehicles from GPS devices are however susceptible to measurement errors – a neglected issue in transport research. By conducting a randomized experiment, we assess the reliability of GPS based traffic data on geographical position, velocity, and altitude for three types of vehicles; bike, car, and bus. We find the geographical positioning reliable, but with an error greater than postulated by the manufacturer and a non-negligible risk for aberrant positioning. Velocity is slightly underestimated, whereas altitude measurements are unreliable.
Resumo:
We present the design and deployment results for PosNet - a large-scale, long-duration sensor network that gathers summary position and status information from mobile nodes. The mobile nodes have a fixed-sized memory buffer to which position data is added at a constant rate, and from which data is downloaded at a non-constant rate. We have developed a novel algorithm that performs online summarization of position data within the buffer, where the algorithm naturally accommodates data input and output rate mismatch, and also provides a delay-tolerant approach to data transport. The algorithm has been extensively tested in a large-scale long-duration cattle monitoring and control application.
Resumo:
BACKGROUND Inconsistencies in research findings on the impact of the built environment on walking across the life course may be methodologically driven. Commonly used methods to define 'neighbourhood', from which built environment variables are measured, may not accurately represent the spatial extent to which the behaviour in question occurs. This paper aims to provide new methods for spatially defining 'neighbourhood' based on how people use their surrounding environment. RESULTS Informed by Global Positioning Systems (GPS) tracking data, several alternative neighbourhood delineation techniques were examined (i.e., variable width, convex hull and standard deviation buffers). Compared with traditionally used buffers (i.e., circular and polygon network), differences were found in built environment characteristics within the newly created 'neighbourhoods'. Model fit statistics indicated that exposure measures derived from alternative buffering techniques provided a better fit when examining the relationship between land-use and walking for transport or leisure. CONCLUSIONS This research identifies how changes in the spatial extent from which built environment measures are derived may influence walking behaviour. Buffer size and orientation influences the relationship between built environment measures and walking for leisure in older adults. The use of GPS data proved suitable for re-examining operational definitions of neighbourhood.
Resumo:
Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (approx 400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multi-player nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.
Resumo:
To the trained-eye, experts can often identify a team based on their unique style of play due to their movement, passing and interactions. In this paper, we present a method which can accurately determine the identity of a team from spatiotemporal player tracking data. We do this by utilizing a formation descriptor which is found by minimizing the entropy of role-specific occupancy maps. We show how our approach is significantly better at identifying different teams compared to standard measures (i.e., shots, passes etc.). We demonstrate the utility of our approach using an entire season of Prozone player tracking data from a top-tier professional soccer league.
Resumo:
Wild carnivores are becoming increasing common in urban areas. In Australia, dingoes exist, in most large cities and towns within their extended range. However, little empirical data is available to inform dingo management or address potential dingo–human conflicts during urban planning. From GPS tracking data, the nine dingoes, predominately juvenile and female, we tracked lived within 700 m of residential homes at all times and frequently crossed roads, visited backyards and traversed built-up areas. Home range sizes ranged between 0.37 km2 and 100.32 km2. Dingoes were mostly nocturnal, averaging 591 m/h between dusk and dawn. Juvenile and adult dingoes spent up to 19% and 72% of their time in urban habitats. Fresh scats from most areas surveyed tested positive to a variety of common zoonoses. These data suggest dingoes are capable of exploiting peri-urban areas and might contribute to human health and safety risks, the significance of which remains unknown.
Resumo:
Self-tracking, the process of recording one's own behaviours, thoughts and feelings, is a popular approach to enhance one's self-knowledge. While dedicated self-tracking apps and devices support data collection, previous research highlights that the integration of data constitutes a barrier for users. In this study we investigated how members of the Quantified Self movement---early adopters of self-tracking tools---overcome these barriers. We conducted a qualitative analysis of 51 videos of Quantified Self presentations to explore intentions for collecting data, methods for integrating and representing data, and how intentions and methods shaped reflection. The findings highlight two different intentions---striving for self-improvement and curiosity in personal data---which shaped how these users integrated data, i.e. the effort required. Furthermore, we identified three methods for representing data---binary, structured and abstract---which influenced reflection. Binary representations supported reflection-in-action, whereas structured and abstract representations supported iterative processes of data collection, integration and reflection. For people tracking out of curiosity, this iterative engagement with personal data often became an end in itself, rather than a means to achieve a goal. We discuss how these findings contribute to our current understanding of self-tracking amongst Quantified Self members and beyond, and we conclude with directions for future work to support self-trackers with their aspirations.
Resumo:
With the development of wearable and mobile computing technology, more and more people start using sleep-tracking tools to collect personal sleep data on a daily basis aiming at understanding and improving their sleep. While sleep quality is influenced by many factors in a person’s lifestyle context, such as exercise, diet and steps walked, existing tools simply visualize sleep data per se on a dashboard rather than analyse those data in combination with contextual factors. Hence many people find it difficult to make sense of their sleep data. In this paper, we present a cloud-based intelligent computing system named SleepExplorer that incorporates sleep domain knowledge and association rule mining for automated analysis on personal sleep data in light of contextual factors. Experiments show that the same contextual factors can play a distinct role in sleep of different people, and SleepExplorer could help users discover factors that are most relevant to their personal sleep.