917 resultados para GPS collar


Relevância:

60.00% 60.00%

Publicador:

Resumo:

大熊猫(Ailuropoda melanoleuca)是我国特有的珍稀濒危物种,国家Ⅰ级重点保护野生动物,被称为“国宝”。目前,大熊猫被局限在我国中西部的岷山、邛崃、大相岭、小相岭、凉山和秦岭6大山系中。对大熊猫的保护和研究,我国政府、保护生物学科研人员、社会各界及国际保护组织都做了大量的工作。根据全国三次大熊猫调查结果显示,大熊猫栖息地片段化现象依然存在,形成多个隔离的大熊猫小种群。尤其在小相岭、大相岭、岷山B和岷山C种群,大熊猫数量较少,且栖息地破碎,面临较大威胁。有的山系大熊猫种群数量些已低于最小可存活大熊猫种群的数量,如果不采取人工措施,这些种群的大熊猫存在灭绝的危险。 将圈养大熊猫放归野外,以补充野外大熊猫种群数量,增加其遗传多样性,复壮和扩大野生大熊猫种群,是大熊猫人工繁育的最终目标。为降低放归的风险性,在放归人工繁育大熊猫前,将救护存活的野生大熊猫先有计划放归野外,并对其进行跟踪监测,对积累大熊猫放归经验,进一步研究大熊猫野外生物学习性,丰富放归地大熊猫种群遗传多样性,为人工繁育大熊猫放归野外夯实基础,具有十分重要的意义。2005年8月8日,国家林业局和四川省人民政府联合将救护野生大熊猫“盛林1号”放归于龙溪-虹口国家级自然保护区内岷山B大熊猫种群栖息地,并进行系统监测研究。成功的积累了一些放归经验和放归大熊猫的生物学资料,为人工繁育大熊猫的放归奠定了一定基础。 2005年8月至2007年6月期间,我们采用GPS无线电项圈、粪便DNA检测和红外线自动触发相机陷阱的方法,对大熊猫“盛林1号”进行了追踪监测,获得了以下成果: 1.通过分析“盛林1号”放归后了活动趋势和采用两种贝叶斯方法,利用目前五大山系的已有微卫星遗传数据,检测“盛林1号”与五大山系的遗传关系的远近,推测其来源于邛崃山系的可能性较大。 2.收集了大量“盛林1号”野外生境选择数据。我们认为“盛林1号”放归后经历了应急期、初步稳定期、长途迁徙期三个阶段(这可能是今后放归大熊猫都必经的三个时期),并与当地大熊猫种群已发生交流。目前“盛林1号”仍在寻找适合的巢域。 3.结合过去监测数据分析,在放归区域大熊猫和羚牛尽管同域分布,但由于食性不同,对微生境选择还是有着很大差异,因此保护管理对策要有针对性。 4.“盛林1号”的放归是成功的。救护大熊猫异地放归工作应继续开展,但要改进放归后的监测技术。要改进现有对人工饲养大熊猫野化培训方法和放归方式,才能真正将人工繁殖个体放归野外。 Giant Panda (Ailuropoda melanoleuca) is an endangered species endemic to China. It was listed as National Protected I Class Species and is crowned as “National treasure” of China. The populations of Giant Panda are limited in 6 mountain system in Center-West of China, i.e. Mingshan, Mt. Qionglai, Mt. Daxiangling,Mt. Xiaoxiangling, Mt. Liangshan and Mt. Qinling. The results of the Third National Survey on Giant Panda showed that the habitats of Giant Panda is still fracted and Giant Panda population is divided into several isolated small populations. Population B from Mt. Daxiangling, Mt. Xiaoxiangling and Mt. Mingshan and Population C from Mt. Mingshan are very small with very fracted habitat and are more endangered. Several populations in those mountain systems are smaller than Minimum Viable Population of Giant Panda. It is very possible that those populations will be extinct without artificial help. The ultimate Goal of Reintroduction caged Giant Panda to wild is to increase wild population size and genetics diversity and rebuild and expand wild Giant Panda population. It is of significant to return rescued wild Giant Panda to wild and monitor their behavior before reintroduction artificial reproduced Giant Panda. It will increase our knowledge on reintroduction of Giant Panda. Aug 8th, 2005, “Shenglin 1”, a rescued wild Giant Panda was returned to Longxi-Hongkou National Nature Reservoir, which is habitat of Giant Panda Population B of Mt. Mingshan. A systematic monitor was carried out on “Shenglin 1”, and the successful return enriched our biological knowledge on Giant Panda reintroduction. It will be very help for future conservation work on reintroduce artificial reproduced Giant Panda. “Shenglin 1” was tracked with GPS collar, DNA in feces and infrared-trigged camera from Aug 2005 to Jun 2007. 1. Locomotion behavior and microsatellites comparison with Giant Panda from the 5 mountain systems indicated that “Shenglin 1” is possibly from Mt. Qionglai. 2. Habitat usage of “Shenglin 1” was studied. It was suggested that there were 3 phases after return, i.e. emergency response, preliminary stable phase and long distance locomotion, which could be a general process for other returned Giant Panda. It was indicated that there was some interaction between “Shenglin 1” and local population. “Shenglin 1” is seeking for suitable home range now. 3. Monitor data also indicated that microhabitat preference of Giant Panda and takin (Budorcas taxicolor) are different because of different diet, though they are sympatric. It was suggested that conservation management for the two species should be plan in particular. 4. The reintroduction of “Shenglin 1” is a successful case. The program of return rescued Giant Panda to other habitats is of value and should be continued. However, more improvement is needed for the monitor technique. More improvement is need for feralization and returning before we return artificial reproduced Giant Panda to wild.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mongolian gazelle, Procapra gutturosa, resides in the immense and dynamic ecosystem of the Eastern Mongolian Steppe. The Mongolian Steppe ecosystem dynamics, including vegetation availability, change rapidly and dramatically due to unpredictable precipitation patterns. The Mongolian gazelle has adapted to this unpredictable vegetation availability by making long range nomadic movements. However, predicting these movements is challenging and requires a complex model. An accurate model of gazelle movements is needed, as rampant habitat fragmentation due to human development projects - which inhibit gazelles from obtaining essential resources - increasingly threaten this nomadic species. We created a novel model using an Individual-based Neural Network Genetic Algorithm (ING) to predict how habitat fragmentation affects animal movement, using the Mongolian Steppe as a model ecosystem. We used Global Positioning System (GPS) collar data from real gazelles to “train” our model to emulate characteristic patterns of Mongolian gazelle movement behavior. These patterns are: preferred vegetation resources (NDVI), displacement over certain time lags, and proximity to human areas. With this trained model, we then explored how potential scenarios of habitat fragmentation may affect gazelle movement. This model can be used to predict how fragmentation of the Mongolian Steppe may affect the Mongolian gazelle. In addition, this model is novel in that it can be applied to other ecological scenarios, since we designed it in modules that are easily interchanged.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this note is to describe preliminary results on assessment of land use by cattle, obtained in a pilot study using Geographic Information System (GIS). The research was carried out on a semi-natural pasture in Sweden, where the geographic positions of one cow were recorded during 25 consecutive days during summer. The cow, wearing a GPS collar, was integrated in a herd of 53 Hereford cattle. Each location point registered for the animal was considered as a sampling unit (N=3,097). The spatial distribution of ground declivity, water sources, cattle tracks, and classes of woody vegetation cover (forest, grassland with trees and open grassland) were recorded. The storage, processing and data analysis were carried out using the Idrisi and GS+ softwares. Three occupation zones were identified in function of the variation in the space used by the animal, which were occupied in a cyclical pattern; with the animal moving from one zone to another in cycles of five days. It was also clear that the cattle distribution in the area was neither random nor uniform, and it was affected by environmental characteristics that act as conditioners on its distribution. These preliminary results suggest that definition of zones of occupation and the environmental conditioners are promising tools to understand the land use by cattle

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ES]Este proyecto trata de desarrollar una aplicación web en Ruby on Rails, donde el usuario pueda visualizar en “tiempo real” la ubicación de su animal haciendo uso de su identificador con GPS (microchip con GPS), si existiera tal dispositivo, o un dispositivo de geolocalización GPS incrustado en el collar del perro, para hacer un seguimiento del mismo cuando otra persona que ha sido contratada lo pasea. Al no disponer de microchips o collares con GPS, así como los respectivos animales para hacer el estudio y, por tanto, su posterior seguimiento, se realizará una simulación del mismo, de ahí que el tiempo real esté puesto entre comillas.