950 resultados para GPS active networks
Resumo:
The deviation in the performance of active networks due to practical operational amplifiers (OA) is mainly because of the finite gain bandwidth productBand nonzero output resistanceR_0. The effect ofBandR_0on two OA impedances and single and multi-OA filters are discussed. In filters, the effect ofR_0is to add zeros to the transfer function often making it nonminimum phase. A simple method of analysis has been suggested for 3-OA biquad and coupled biquad circuits. A general method of noise minimization of the generalized impedance converter (GIC), while operating OA's within the prescribed voltage and current limits, is also discussed. The 3-OA biquadratic sections analyzed also exhibit noise behavior and signal handling capacity similar to the GIC. The GIC based structures are found to be better than other configurations both in biquadratic sections and direct realizations of higher order transfer functions.
Resumo:
In this paper we present an architecture for network and applications management, which is based on the Active Networks paradigm and shows the advantages of network programmability. The stimulus to develop this architecture arises from an actual need to manage a cluster of active nodes, where it is often required to redeploy network assets and modify nodes connectivity. In our architecture, a remote front-end of the managing entity allows the operator to design new network topologies, to check the status of the nodes and to configure them. Moreover, the proposed framework allows to explore an active network, to monitor the active applications, to query each node and to install programmable traps. In order to take advantage of the Active Networks technology, we introduce active SNMP-like MIBs and agents, which are dynamic and programmable. The programmable management agents make tracing distributed applications a feasible task. We propose a general framework that can inter-operate with any active execution environment. In this framework, both the manager and the monitor front-ends communicate with an active node (the Active Network Access Point) through the XML language. A gateway service performs the translation of the queries from XML to an active packet language and injects the code in the network. We demonstrate the implementation of an active network gateway for PLAN (Packet Language for Active Networks) in a forty active nodes testbed. Finally, we discuss an application of the active management architecture to detect the causes of network failures by tracing network events in time.
Resumo:
This paper proposes the deployment of a neural network computing environment on Active Networks. Active Networks are packet-switched computer networks in which packets can contain code fragments that are executed on the intermediate nodes. This feature allows the injection of small pieces of codes to deal with computer network problems directly into the network core, and the adoption of new computing techniques to solve networking problems. The goal of our project is the adoption of a distributed neural network for approaching tasks which are specific of the computer network environment. Dynamically reconfigurable neural networks are spread on an experimental wide area backbone of active nodes (ABone) to show the feasibility of the proposed approach.
Resumo:
New conceptual ideas on network architectures have been proposed in the recent past. Current store-andforward routers are replaced by active intermediate systems, which are able to perform computations on transient packets, in a way that results very helpful for developing and deploying new protocols in a short time. This paper introduces a new routing algorithm, based on a congestion metric, and inspired by the behavior of ants in nature. The use of the Active Networks paradigm associated with a cooperative learning environment produces a robust, decentralized algorithm capable of adapting quickly to changing conditions.
Resumo:
Active Networks can be seen as an evolution of the classical model of packet-switched networks. The traditional and ”passive” network model is based on a static definition of the network node behaviour. Active Networks propose an “active” model where the intermediate nodes (switches and routers) can load and execute user code contained in the data units (packets). Active Networks are a programmable network model, where bandwidth and computation are both considered shared network resources. This approach opens up new interesting research fields. This paper gives a short introduction of Active Networks, discusses the advantages they introduce and presents the research advances in this field.
Resumo:
This paper focuses on improving computer network management by the adoption of artificial intelligence techniques. A logical inference system has being devised to enable automated isolation, diagnosis, and even repair of network problems, thus enhancing the reliability, performance, and security of networks. We propose a distributed multi-agent architecture for network management, where a logical reasoner acts as an external managing entity capable of directing, coordinating, and stimulating actions in an active management architecture. The active networks technology represents the lower level layer which makes possible the deployment of code which implement teleo-reactive agents, distributed across the whole network. We adopt the Situation Calculus to define a network model and the Reactive Golog language to implement the logical reasoner. An active network management architecture is used by the reasoner to inject and execute operational tasks in the network. The integrated system collects the advantages coming from logical reasoning and network programmability, and provides a powerful system capable of performing high-level management tasks in order to deal with network fault.
Resumo:
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and/or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.
Resumo:
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and / or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.
Resumo:
This work clarifies the relationship between network circuit (topology) and behavior (information transmission and synchronization) in active networks, e. g. neural networks. As an application, we show how to determine a network topology that is optimal for information transmission. By optimal, we mean that the network is able to transmit a large amount of information, it possesses a large number of communication channels, and it is robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.
Estimativa e análise de índices de irregularidades da ionosfera utilizando dados GPS de redes ativas
Resumo:
Observable GNSS (Global Navigation Satellite System) are affected by systematic errors due to free electrons present in the ionosphere. The error associated with the ionosphere depends on the Total Electron Content (TEC), which is influenced by several variables: solar cycle, season, local time, geomagnetic activity and geographic location. The GPS (Global Positioning System), GLONASS (Global Orbiting Navigation Satellite System) and Galileo dual frequency receivers allow the calculation of the error that affects the GNSS observables and the TEC. Using the rate of change of TEC (ROT - Rate of TEC) indices that indicate irregularities of the ionosphere can be determined, allowing inferences about its behavior. Currently it is possible to perform such studies in Brazil, due to the several Active Networks available, such as RBMC/RIBaC (Rede Brasileira de Monitoramento Contínuo/Rede INCRA de Bases Comunitárias) and GNSS Active Network of São Paulo. The proposed research aimed at estimating and analysing of indexes of irregularities of the ionosphere, besides supplying the geosciences of information about the behavior of the ionosphere.
Resumo:
This paper focuses on active networks applications and in particular on the possible interactions among these applications. Active networking is a very promising research field which has been developed recently, and which poses several interesting challenges to network designers. A number of proposals for e±cient active network architectures are already to be found in the literature. However, how two or more active network applications may interact has not being investigated so far. In this work, we consider a number of applications that have been designed to exploit the main features of active networks and we discuss what are the main benefits that these applications may derive from them. Then, we introduce some forms of interaction including interference and communications among applications, and identify the components of an active network architecture that are needed to support these forms of interaction. We conclude by presenting a brief example of an active network application exploiting the concept of interaction.
Resumo:
Ant colonies in nature provide a good model for a distributed, robust and adaptive routing algorithm. This paper proposes the adoption of the same strategy for the routing of packets in an Active Network. Traditional store-and-forward routers are replaced by active intermediate systems, which are able to perform computations on transient packets, in a way that results very helpful for developing and dynamically deploying new protocols. The adoption of the Active Networks paradigm associated with a cooperative learning environment produces a robust, decentralized routing algorithm capable of adapting to network traffic conditions.
Resumo:
Nowadays, with the expansion of the reference stations networks, several positioning techniques have been developed and/or improved. Among them, the VRS (Virtual Reference Station) concept has been very used. In this paper the goal is to generate VRS data in a modified technique. In the proposed methodology the DD (double difference) ambiguities are not computed. The network correction terms are obtained using only atmospheric (ionospheric and tropospheric) models. In order to carry out the experiments it was used data of five reference stations from the GPS Active Network of West of São Paulo State and an extra station. To evaluate the VRS data quality it was used three different strategies: PPP (Precise Point Positioning) and Relative Positioning in static and kinematic modes, and DGPS (Differential GPS). Furthermore, the VRS data were generated in the position of a real reference station. The results provided by the VRS data agree quite well with those of the real file data.
Resumo:
En este trabajo hemos cuantificado las tasas de deformación actual de la cuenca del Bajo Segura (NE del corredor de cizalla de la Bética oriental), a partir del análisis de una red GPS con 11 vértices geodésicos. Se han analizado los datos de cuatro campañas GPS entre junio de 1999 y enero de 2013, que han sido procesados con la versión 6.2 del software GIPSY-OASIS. Este software utiliza la técnica de posicionamiento puntual de precisión conocido por las siglas PPP. Se observa un acortamiento ~N-S en toda la cuenca de mayor magnitud en el sur, en la zona de falla del Bajo Segura, con valores que varían de oeste a este entre 0,73 y 0,24 mm/año. En el borde septentrional de la cuenca, en la zona de falla de Crevillente, los valores de acortamiento N-S son menores. Sin embargo, en esta falla se ha observado un movimiento lateral sinistrorso que, en la componente E-O, varía entre 0,44 y 0,75 mm/año.
Resumo:
The fast spread of the Internet and the increasing demands of the service are leading to radical changes in the structure and management of underlying telecommunications systems. Active networks (ANs) offer the ability to program the network on a per-router, per-user, or even per-packet basis, thus promise greater flexibility than current networks. To make this new network paradigm of active network being widely accepted, a lot of issues need to be solved. Management of the active network is one of the challenges. This thesis investigates an adaptive management solution based on genetic algorithm (GA). The solution uses a distributed GA inspired by bacterium on the active nodes within an active network, to provide adaptive management for the network, especially the service provision problems associated with future network. The thesis also reviews the concepts, theories and technologies associated with the management solution. By exploring the implementation of these active nodes in hardware, this thesis demonstrates the possibility of implementing a GA based adaptive management in the real network that being used today. The concurrent programming language, Handel-C, is used for the description of the design system and a re-configurable computer platform based on a FPGA process element is used for the hardware implementation. The experiment results demonstrate both the availability of the hardware implementation and the efficiency of the proposed management solution.