13 resultados para GOGAT
Resumo:
O objetivo deste trabalho foi avaliar a assimilação metabólica de nitrogênio em plântulas de seringueira cultivadas na presença de nitrato ou de amônio, por meio da quantificação da atividade das enzimas redutase do nitrato (RN), glutamina sintetase (GS), glutamato sintase (GOGAT) e glutamato desidrogenase (GDH). Os seguintes tratamentos foram avaliados: fontes de N - controle, sem aplicação de N; amônio a 8 mmol L-1; e nitrato a 8 mmol L-1 - e tempos de exposição - 0 e 27 dias -, em arranjo fatorial 3x2, no delineamento inteiramente casualizado, com quatro repetições. A forma amoniacal promoveu maior assimilação metabólica de N, o que resultou em maior acúmulo de aminoácidos. A assimilação, tanto da forma nítrica quanto da amoniacal, aconteceu principalmente via GS/GOGAT; parte do N nítrico é assimilado nas raízes, com pequena participação da GDH, e parte é translocada para outros órgãos. O N amoniacal é totalmente assimilado nas raízes, com significativa participação da GDH. Nas folhas, a GS participa tanto da assimilação primária como da reassimilação do amônio fotorrespirado, independentemente da fonte nitrogenada, enquanto a enzima GDH tem papel secundário, independentemente da fonte ou do tempo de exposição. A atividade da RN in vitro é detectada somente em raízes e caules.
Resumo:
O trabalho teve como objetivo avaliar o efeito de diferentes aminoácidos e do ácido giberélico (GA) sobre a atividade da glutamina sintetase (GS) e da glutamato sintase (GOGAT) e o crescimento de frutos de soja. Frutos imaturos foram cultivados com diferentes concentrações de paclobutrazol (PBZ), inibidor da biossíntese de giberelinas, o qual inibiu o crescimento dos frutos em até 80%. Em seguida foi avaliado o efeito do GA sobre o crescimento dos frutos de soja cultivados com PBZ. O regulador de crescimento restabeleceu o crescimento dos frutos cultivados com 0,034 mM de PBZ. Entretanto, com 0,85 mM de PBZ não se obteve o mesmo efeito positivo, indicando um possível nível fitotóxico. Posteriormente os frutos foram cultivados durante oito dias com glutamina, asparagina ou alantoína, na presença ou não de GA, após o que determinaram-se as atividades enzimáticas. As enzimas de assimilação do nitrogênio foram mais ativas na presença da alantoína. O GA inibiu a atividade da GS e estimulou as da Fd-GOGAT e da NADH-GOGAT. A atividade da Fd-GOGAT foi superior à da NADH-GOGAT, talvez devido à ferredoxina reduzida presente nos frutos cultivados sob iluminação constante, advinda da atividade fotossintética. Os resultados obtidos permitem concluir que giberelinas, provavelmente, estão envolvidas no crescimento de frutos imaturos de soja e na regulação da atividade das enzimas GS e GOGAT nesses frutos.
Resumo:
O estresse hídrico afeta profundamente o metabolismo celular vegetal. Neste trabalho, objetivou-se quantificar os efeitos da deficiência hídrica e sua recuperação sobre a atividade das enzimas do metabolismo do nitrogênio: redutase do nitrato (RN), glutamina sintetase (GS) e glutamato sintase (GOGAT) e sobre o acúmulo de prolina em plantas dos genótipos de milho BR 2121 e BR 205. O experimento foi conduzido em casa de vegetação, sob o delineamento inteiramente casualizado, com quatro repetições, utilizando-se vasos que continham 14,3kg de solo. Os tratamentos consistiram da combinação dos dois genótipos e quatro intervalos entre irrigações (1, 3, 5 e 7 dias). No dia da avaliação (49 dias após emergência), os tratamentos com intervalos entre 3 e 7 dias, haviam sido irrigados no dia anterior, caracterizando-se portanto como recuperação da deficiência hídrica leve e severa, respectivamente. As extrações e análises foram realizadas utilizando-se a terceira folha basípeta completamente expandida. As atividades das enzimas estudadas não diferiram entre os tratamentos de estresse hídrico, controle e recuperação do estresse moderado, entretanto as plantas sob recuperação do estresse severo apresentaram atividade enzimática superior à das plantas controle. O acúmulo de prolina livre nas folhas aumentou com o estresse hídrico e respondeu à recuperação do estresse apresentando redução. de modo geral, a atividade enzimática e o acúmulo de prolina apresentaram respostas inversas dentro dos tratamentos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The role of the delta-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Delta(1)-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS. GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Delta(1)-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
The present study was undertaken to identify changes in some important proteins involved in CO2 fixation (Rubisco, Rubisco activase (RA), Rubisco binding protein (RBP)), NH4+ assimilation (glutamine synthetase (GS) and glutamate synthase (GOGAT)), using immunoblotting, and in the antioxidative defense as a result of Cu or Mn excess in barley leaves (Hordeum vulgare L. cv. Obzor). Activities and isoenzyme patterns of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT), as well as the levels of ascorbate (ASC), non-protein sulfhydryl groups, hydrogen peroxide and oxidative damage to proteins were determined. Data were correlated to the accumulation of Cu or Mn in the leaves after 5 days supply of heavy metal (HM) excess in the nutrient solution. In the highest Cu excess (1500 μM), Rubisco LS and SS were reduced considerably whereas under the highest Mn concentrations (18,300 μM) only minor changes in Rubisco subunits were detected. The RBP was diminished under the highest concentrations of both Cu or Mn. The bands of RA changed differently comparing Cu and Mn toxicity. GS decreased and GOGAT was absent under the highest concentration of Cu. At Mn excess Fd-GOGAT diminished whereas GS was not apparently changed. The development of toxicity symptoms corresponded to an accumulation of Cu or Mn in the leaves and to a gradual increase in protein carbonylation, a lower SOD activity and elevated CAT and GPX activities. APX activity was diminished under Mn toxicity and was not changed under Cu excess. Generally, changes in the isoenzyme profiles were similar under both toxicities. An accumulation of H2O2 was observed only at Mn excess. Contrasting changes in the low-molecular antioxidants were detected when comparing both toxicities. Cu excess affected mainly the non-protein SH groups, while Mn influenced the ASC content. Oxidative stress under Cu or Mn toxicity was most probably the consequence of depletion in low-molecular antioxidants as a result of their involvement in detoxification processes and disbalance in antioxidative enzymes. The link between heavy metal accumulation in leaves, leading to different display of oxidative stress, and changes in individual chloroplast proteins is discussed in the article.
Resumo:
NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) is a key enzyme in primary nitrogen assimilation in alfalfa (Medicago sativa L.) root nodules. Here we report that in alfalfa, a single gene, probably with multiple alleles, encodes for NADH-GOGAT. In situ hybridizations were performed to assess the location of NADH-GOGAT transcript in alfalfa root nodules. In wild-type cv Saranac nodules the NADH-GOGAT gene is predominantly expressed in infected cells. Nodules devoid of bacteroids (empty) induced by Sinorhizobium meliloti 7154 had no NADH-GOGAT transcript detectable by in situ hybridization, suggesting that the presence of the bacteroid may be important for NADH-GOGAT expression. The pattern of expression of NADH-GOGAT shifted during root nodule development. Until d 9 after planting, all infected cells appeared to express NADH-GOGAT. By d 19, a gradient of expression from high in the early symbiotic zone to low in the late symbiotic zone was observed. In 33-d-old nodules expression was seen in only a few cell layers in the early symbiotic zone. This pattern of expression was also observed for the nifH transcript but not for leghemoglobin. The promoter of NADH-GOGAT was evaluated in transgenic alfalfa plants carrying chimeric β-glucuronidase promoter fusions. The results suggest that there are at least four regulatory elements. The region responsible for expression in the infected cell zone contains an 88-bp direct repeat.
Resumo:
In root nodules of alfalfa (Medicago sativa L.), N2 is reduced to NH4+ in the bacteroid by the nitrogenase enzyme and then released into the plant cytosol. The NH4+ is then assimilated by the combined action of glutamine synthetase (EC 6.3.1.2) and NADH-dependent Glu synthase (NADH-GOGAT; EC 1.4.1.14) into glutamine and Glu. The alfalfa nodule NADH-GOGAT protein has a 101-amino acid presequence, but the subcellular location of the protein is unknown. Using immunocytochemical localization, we determined first that the NADH-GOGAT protein is found throughout the infected cell region of both 19- and 33-d-old nodules. Second, in alfalfa root nodules NADH-GOGAT is localized predominantly to the amyloplast of infected cells. This finding, together with earlier localization and fractionation studies, indicates that in alfalfa the infected cells are the main location for the initial assimilation of fixed N2.
Resumo:
The quantitative analysis with immunogold-electron microscopy using a single-affinity-purified anti-NADH-glutamate synthase (GOGAT) immunoglobulin G (IgG) as the primary antibody showed that the NADH-GOGAT protein was present in various forms of plastids in the cells of the epidermis and exodermis, in the cortex parenchyma, and in the vascular parenchyma of root tips (<10 mm) of rice (Oryza sativa) seedlings supplied with 1 mm NH4+ for 24 h. The values of the mean immunolabeling density of plastids were almost equal among these different cell types in the roots. However, the number of plastids per individual cell type was not identical, and some parts of the cells in the epidermis and exodermis contained large numbers of plastids that were heavily immunolabeled. Although there was an indication of labeling in the mitochondria using the single-affinity-purified anti-NADH-GOGAT IgG, this was not confirmed when a twice-affinity-purified IgG was used, indicating an exclusively plastidial location of the NADH-GOGAT protein in rice roots. These results, together with previous work from our laboratory (K. Ishiyama, T. Hayakawa, and T. Yamaya [1998] Planta 204: 288–294), suggest that the assimilation of exogeneously supplied NH4+ ions is primarily via the cytosolic glutamine synthetase/plastidial NADH-GOGAT cycle in specific regions of the epidermis and exodermis in rice roots. We also discuss the role of the NADH-GOGAT protein in vascular parenchyma cells.
Resumo:
NADP+-isocitrate dehydrogenase (NADP+-IDH; EC 1.1.1.42) is involved in the supply of 2-oxoglutarate for ammonia assimilation and glutamate synthesis in higher plants through the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Only one NADP+-IDH form of cytosolic localization was detected in green cotyledons of pine (Pinus spp.) seedlings. The pine enzyme was purified and exhibited molecular and kinetic properties similar to those described for NADP+-IDH from angiosperm, with a higher catalytic efficiency (105 m−1 s−1) than the deduced efficiencies for GS and GOGAT in higher plants. A polyclonal antiserum was raised against pine NADP+-IDH and used to assess protein expression in the seedlings. Steady-state levels of NADP+-IDH were coordinated with GS during seed germination and were associated with GS/GOGAT enzymes during chloroplast biogenesis, suggesting that NADP+-IDH is involved in the provision of carbon skeletons for the synthesis of nitrogen-containing molecules. However, a noncoordinated pattern of NADP+-IDH and GS/GOGAT was observed in advanced stages of cotyledon development and in the hypocotyl. A detailed analysis in hypocotyl sections revealed that NADP+-IDH abundance was inversely correlated with the presence of GS, GOGAT, and ribulose-1,5-bisphosphate carboxylase/oxygenase but was associated with the differentiation of the organ. These results cannot be explained by the accepted role of the enzyme in nitrogen assimilation and strongly suggest that NADP+-IDH may have other, as-yet-unknown, biological functions.
Resumo:
In many bacteria, accumulation of K+ at high external osmolalities is accompanied by accumulation of glutamate. To determine whether there is an obligatory relationship between glutamate and K+ pools, we studied mutant strains of Salmonella typhimurium with defects in glutamate synthesis. Enteric bacteria synthesize glutamate by the combined action of glutamine synthetase and glutamate synthase (GS/GOGAT cycle) or the action of biosynthetic glutamate dehydrogenase (GDH). Activity of the GS/GOGAT cycle is required under nitrogen-limiting conditions and is decreased at high external ammonium/ammonia ((NH4)+) concentrations by lowered synthesis of GS and a decrease in its catalytic activity due to covalent modification (adenylylation by GS adenylyltransferase). By contrast, GDH functions efficiently only at high external (NH4)+ concentrations, because it has a low affinity for (NH4)+. When grown at low concentrations of (NH4)+ (< or = 2 mM), mutant strains of S. typhimurium that lack GOGAT and therefore are dependent on GDH have a low glutamate pool and grow slowly; we now demonstrate that they have a low K+ pool. When subjected to a sudden (NH4)+ upshift, strains lacking GS adenylyltransferase drain their glutamate pool into glutamine and grow very slowly; we now find that they also drain their K+ pool. Restoration of the glutamate pool in these strains at late times after shift was accompanied by restoration of the K+ pool and a normal growth rate. Taken together, the results indicate that glutamate is required to maintain the steady-state K+ pool -- apparently no other anion can substitute as a counter-ion for free K+ -- and that K+ glutamate is required for optimal growth.
Resumo:
Glutamate synthase (GOGAT) is one of the two important enzymes involved in the ammonium assimilation pathway glutamine synthetase (GS)/GOGAT, which enables Hfx. mediterranei to thrive in media with low ammonium concentration or containing just nitrate as single nitrogen source. The gene coding for this enzyme, gltS, has been sequenced, analysed and compared with other GOGATs from different organisms from the three domains of life. According to its amino acid sequence, Hfx. mediterranei GOGAT displays high homology with those from other archaeal halophilic organisms and with the bacterial alpha-like subunit. Hfx. mediterranei GOGAT and GS expression was induced under conditions of ammonium restriction. The GOGAT protein was found to be a monomer with a molecular mass of 163.78 kDa, which is consistent with that estimated by gel filtration, 198 ± 30 kDa. The enzyme is highly ferredoxin dependent: activity was only observed with one of the two different 2Fe–2S ferredoxins chromatographically isolated from Hfx. mediterranei. The enzyme also displayed typical halophilic behaviour, being fully stable, and producing maximal activity, at salt concentrations from 3 to 4 M NaCl, pH 7.5 and a temperature of 50 °C.
Resumo:
Glutamine synthetase (GS) is a vital enzyme for the assimilation of ammonia into amino acids in higher plants. In legumes, GS plays a crucial role in the assimilation of the ammonium released by nitrogen-fixing bacteria in root nodules, constituting an important metabolic knob controlling the nitrogen (N) assimilatory pathways. To identify new regulators of nodule metabolism, we profiled the transcriptome of Medicago truncatula nodules impaired in N assimilation by specifically inhibiting GS activity using phosphinothricin (PPT). Global transcript expression of nodules collected before and after PPT addition (4, 8, and 24 h) was assessed using Affymetrix M. truncatula GeneChip arrays. Hundreds of genes were regulated at the three time points, illustrating the dramatic alterations in cell metabolism that are imposed on the nodules upon GS inhibition. The data indicate that GS inhibition triggers a fast plant defense response, induces premature nodule senescence, and promotes loss of root nodule identity. Consecutive metabolic changes were identified at the three time points analyzed. The results point to a fast repression of asparagine synthesis and of the glycolytic pathway and to the synthesis of glutamate via reactions alternative to the GS/GOGAT cycle. Several genes potentially involved in the molecular surveillance for internal organic N availability are identified and a number of transporters potentially important for nodule functioning are pinpointed. The data provided by this study contributes to the mapping of regulatory and metabolic networks involved in root nodule functioning and highlight candidate modulators for functional analysis.