83 resultados para GLUT2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins secreted in response to oral glucose ingestion by intestinal L and K cells, respectively. The molecular mechanisms responsible for intestinal cell glucose sensing are unknown but could be related to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1 content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion and an impaired glucose tolerance in all mice. In conclusion, both incretins secretion depends on mechanisms involving their own receptors and GLP-1 further requires GLUT2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IDX-1 (islet/duodenum homeobox-1) is a transcription factor expressed in the duodenum and pancreatic beta and delta cells. It is required for embryonic development of the pancreas and transactivates the Glut2, glucokinase, insulin, and somatostatin genes. Here we show that exposure of isolated rat pancreatic islets to palmitic acid induced a approximately 70% decrease in IDX-1 mRNA and protein expression as well as 40 and 65% decreases in the binding activity of IDX-1 for its cognate cis-regulatory elements of the Glut2 and insulin promoters, respectively. The inhibitory effect of palmitic acid required its mitochondrial oxidation since it was prevented by the carnitine palmitoyltransferase I inhibitor bromopalmitic acid. The palmitic acid effect on IDX-1 was correlated with decreases in GLUT2 and glucokinase expression of 40 and 25%, respectively, at both the mRNA and protein levels. Insulin and somatostatin mRNA expression was also decreased by 40 and 60%, whereas glucagon mRNA expression was not modified. After 48 h of exposure to fatty acids, total islet insulin, somatostatin, and glucagon contents were decreased by 85, 55, and 65%, respectively. At the same time, total hormone release was strongly stimulated (13-fold) for glucagon, whereas its was only marginally increased for insulin and somatostatin (1.5- and 1.7-fold, respectively). These results indicate that elevated fatty acid levels 1) negatively regulate Idx-1 expression; 2) decrease the expression of genes transactivated by IDX-1 such as those for GLUT2, glucokinase, insulin, and somatostatin; and 3) lead to an important increase in glucagon synthesis and secretion. Fatty acids thus have pleiotropic effects on pancreatic islet gene expression, and the negative control of Idx-1 expression may be an initial event in the development of these multiple defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2(-/-) intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [(14)C]glucose proceeded with the same kinetics in control and GLUT2(-/-) intestine, [(14)C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2(-/-) intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-sensing neurons in the brainstem participate in the regulation of energy homeostasis but have been poorly characterized because of the lack of specific markers to identify them. Here we show that GLUT2-expressing neurons of the nucleus of the tractus solitarius form a distinct population of hypoglycemia-activated neurons. Their response to low glucose is mediated by reduced intracellular glucose metabolism, increased AMP-activated protein kinase activity, and closure of leak K(+) channels. These are GABAergic neurons that send projections to the vagal motor nucleus. Light-induced stimulation of channelrhodospin-expressing GLUT2 neurons in vivo led to increased parasympathetic nerve firing and glucagon secretion. Thus GLUT2 neurons of the nucleus tractus solitarius link hypoglycemia detection to counterregulatory response. These results may help identify the cause of hypoglycemia-associated autonomic failure, a major threat in the insulin treatment of diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GLUT2 disappearance is a marker of the beta cell glucose-unresponsiveness associated with diabetes. Understanding the factor(s) leading to this dysfunction may shed light on pathogenesis of diabetes. Since the regulation of GLUT2 expression in diabetes can so far only be studied in in vivo experiments, we developed a novel experimental approach to study the genetic regulation of GLUT2 in diabetes. By encapsulating islets or cell lines in semi-permeable membranes, these cells can be exposed to the diabetic environment of rats or mice and can be retrieved for analysis of GLUT2 expression and for the change in the secretory response to glucose. Immunocytochemical analysis of transporter expression reveals changes in protein expression while transcriptional analysis of GLUT2 gene expression could be performed in cells transfected with promoter-reporter gene constructs. Using this last approach we hope to be able to characterize the promoter regions involved in the beta cell- and diabetes-specific regulation of GLUT2 expression and possibly to determine which factors are responsible for this regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose production by liver is a major physiological function, which is required to prevent development of hypoglycemia in the postprandial and fasted states. The mechanism of glucose release from hepatocytes has not been studied in detail but was assumed instead to depend on facilitated diffusion through the glucose transporter GLUT2. Here, we demonstrate that in the absence of GLUT2 no other transporter isoforms were overexpressed in liver and only marginally significant facilitated diffusion across the hepatocyte plasma membrane was detectable. However, the rate of hepatic glucose output was normal. This was evidenced by (i) the hyperglycemic response to i.p. glucagon injection; (ii) the in vivo measurement of glucose turnover rate; and (iii) the rate of release of neosynthesized glucose from isolated hepatocytes. These observations therefore indicated the existence of an alternative pathway for hepatic glucose output. Using a [14C]-pyruvate pulse-labeling protocol to quantitate neosynthesis and release of [14C]glucose, we demonstrated that this pathway was sensitive to low temperature (12 degreesC). It was not inhibited by cytochalasin B nor by the intracellular traffic inhibitors brefeldin A and monensin but was blocked by progesterone, an inhibitor of cholesterol and caveolae traffic from the endoplasmic reticulum to the plasma membrane. Our observations thus demonstrate that hepatic glucose release does not require the presence of GLUT2 nor of any plasma membrane glucose facilitative diffusion mechanism. This implies the existence of an as yet unsuspected pathway for glucose release that may be based on a membrane traffic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pancreatic beta-cells, the high Km glucose transporter GLUT2 catalyzes the first step in glucose-induced insulin secretion by glucose uptake. Expression of the transporter has been reported to be modulated by glucose either at the protein or mRNA levels. In this study we used the differentiated insulinoma cell line INS-1 which expresses high levels of GLUT2 and show that the expression of GLUT2 is regulated by glucose at the transcriptional level. By run-on transcription assays we showed that glucose induced GLUT2 gene transcription 3-4-fold in INS-1 cells which was paralleled by a 1.7-2.3-fold increase in cytoplasmic GLUT2 mRNA levels. To determine whether glucose regulatory sequences were present in the promoter region of GLUT2, we cloned and characterized a 1.4-kilobase region of mouse genomic DNA located 5' of the translation initiation site. By RNase protection assays and primer extension, we determined that multiple transcription initiation sites were present at positions -55, -64, and -115 from the first coding ATG and which were identified in liver, intestine, kidney, and beta-cells mRNAs. Plasmids were constructed with the mouse promoter region linked to the reporter gene chloramphenicol acetyltransferase (CAT), and transiently and stably transfected in the INS-1 cells. Glucose induced a concentration-dependent increase in CAT activity which reached a maximum of 3.6-fold at 20 mM glucose. Similar CAT constructs made of the human GLUT2 promoter region and the CAT gene displayed the same glucose-dependent increase in transcriptional activity when transfected into INS-1 cells. Comparison of the mouse and human promoter regions revealed sequence identity restricted to a few stretches of sequences which suggests that the glucose responsive element(s) may be conserved in these common sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose homoeostasis necessitates the presence in the liver of the high Km glucose transporter GLUT2. In hepatocytes, we and others have demonstrated that glucose stimulates GLUT2 gene expression in vivo and in vitro. This effect is transcriptionally regulated and requires glucose metabolism within the hepatocytes. In this report, we further characterized the cis-elements of the murine GLUT2 promoter, which confers glucose responsiveness on a reporter gene coding the chloramphenicol acetyl transferase (CAT) gene. 5'-Deletions of the murine GLUT2 promoter linked to the CAT reporter gene were transfected into a GLUT2 expressing hepatoma cell line (mhAT3F) and into primary cultured rat hepatocytes, and subsequently incubated at low and high glucose concentrations. Glucose stimulates gene transcription in a manner similar to that observed for the endogenous GLUT2 mRNA in both cell types; the -1308 to -212 bp region of the promoter contains the glucose-responsive elements. Furthermore, the -1308 to -338 bp region of the promoter contains repressor elements when tested in an heterologous thymidine kinase promoter. The glucose-induced GLUT2 mRNA accumulation was decreased by dibutyryl-cAMP both in mhAT3F cells and in primary hepatocytes. A putative cAMP-responsive element (CRE) is localized at the -1074/-1068 bp region of the promoter. The inhibitory effect of cAMP on GLUT2 gene expression was observed in hepatocytes transfected with constructs containing this CRE (-1308/+49 bp fragment), as well as with constructs not containing the consensus CRE (-312/+49 bp fragment). This suggests that the inhibitory effect of cAMP is not mediated by the putative binding site located in the repressor fragment of the GLUT2 promoter. Taken together, these data demonstrate that the elements conferring glucose and cAMP responsiveness on the GLUT2 gene are located within the -312/+49 region of the promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following a former immunohistochemical study in the rat brain [Arluison, M., Quignon, M., Nguyen, P., Thorens, B., Leloup, C., Penicaud, L. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. I. Immunohistochemical study. J. Chem. Neuroanat., in press], we have analyzed the ultrastructural localization of GLUT2 in representative and/or critical areas of the forebrain and hindbrain. In agreement with previous results, we observe few oligodendrocyte and astrocyte cell bodies discretely labeled for GLUT2 in large myelinated fibre bundles and most brain areas examined, whereas the reactive glial processes are more numerous and often localized in the vicinity of nerve terminals and/or dendrites or dendritic spines forming synaptic contacts. Only some of them appear closely bound to unlabeled nerve cell bodies and dendrites. Furthermore, the nerve cell bodies prominently immunostained for GLUT2 are scarce in the brain nuclei examined, whereas the labeled dendrites and dendritic spines are relatively numerous and frequently engaged in synaptic junctions. In conformity with the observation of GLUT2-immunoreactive rings at the periphery of numerous nerve cell bodies in various brain areas (see previous paper), we report here that some neuronal perikarya of the dorsal endopiriform nucleus/perirhinal cortex exhibit some patches of immunostaining just below the plasma membrane. However, the presence of many GLUT2-immunoreactive nerve terminals and/or astrocyte processes, some of them being occasionally attached to nerve cell bodies and dendrites, could also explain the pericellular labeling observed. The results here reported support the idea that GLUT2 may be expressed by some cerebral neurones possibly involved in glucose sensing, as previously discussed. However, it is also possible that this transporter participate in the regulation of neurotransmitter release and, perhaps, in the release of glucose by glial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthesis, intracellular transport, and surface expression of the beta cell glucose transporter GLUT2 was investigated in isolated islets and insulinoma cells. Using a trypsin sensitivity assay to measure cell surface expression, we determined that: (a) greater than 95% of GLUT2 was expressed on the plasma membrane; (b) GLUT2 did not recycle in intracellular vesicles; and (c) after trypsin treatment, reexpression of the intact transporter occurred with a t1/2 of approximately 7 h. Kinetics of intracellular transport of GLUT2 was investigated in pulse-labeling experiments combined with glycosidase treatment and the trypsin sensitivity assay. We determined that transport from the endoplasmic reticulum to the trans-Golgi network (TGN) occurred with a t1/2 of 15 min and that transport from the TGN to the plasma membrane required a similar half-time. When added at the start of a pulse-labeling experiment, brefeldin A prevented exit of GLUT2 from the endoplasmic reticulum. When the transporter was first accumulated in the TGN during a 15-min period of chase, but not following a low temperature (22 degrees C) incubation, addition of brefeldin A (BFA) prevented subsequent surface expression of the transporter. This indicated that brefeldin A prevented GLUT2 exit from the TGN by acting at a site proximal to the 22 degrees C block. Together, these data demonstrate that GLUT2 surface expression in beta cells is via the constitutive pathway, that transport can be blocked by BFA at two distinct steps and that once on the surface, GLUT2 does not recycle in intracellular vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Rôle du transporteur de glucose GLUT2 dans les mécanismes centraux de glucodétection impliqués dans le contrôle de la sécrétion du glucagon et de la prise alimentaire. Les mécanismes centraux de glucodétection jouent un rôle majeur dans le contrôle de l'homéostasie glucidique. Ces senseurs régulent principalement la sécrétion des hormones contre-régulatrices, la prise alimentaire et la dépense énergétique. Cependant, la nature cellulaire et le fonctionnement moléculaire de ces mécanismes ne sont encore que partiellement élucidés. Dans cette étude, nous avons tout d'abord mis en évidence une suppression de la stimulation de la sécrétion du glucagon et de la prise alimentaire en réponse à une injection intracérébroventriculaire (i.c.v.) de 2-déoxy-D-glucose (2-DG) chez les souris de fond génétique mixte et déficientes pour le gène glut2 (souris RIPG1xglut2-/-). De plus, chez ces souris, l'injection de 2-DG n'augmente pas l'activation neuronale dans l'hypothalamus et le complexe vagal dorsal. Nous avons ensuite montré que la ré-expression de GLUT2 dans les neurones des souris RIPG1xg1ut2-/- ne restaure pas la sécrétion du glucagon et la prise alimentaire en réponse à une injection i.c.v. de 2-DG. En revanche, l'injection de 2-DG réalisée chez les souris RIPG1xg1ut2-/- ré-exprimant le GLUT2 dans leurs astrocytes, stimule la sécrétion du glucagon et l'activation neuronale dans le complexe vagal dorsal mais n'augmente pas la prise alimentaire ni l'activation neuronale dans l'hypothalamus. L'ensemble de ces résultats démontre l'existence de différents mécanismes centraux de glucodétection dépendants de GLUT2. Les mécanismes régulant la sécrétion du glucagon sont dépendants de GLUT2 astrocytaire et pourraient être localisés dans le complexe vagal dorsal. L'implication des astrocytes dans ces mécanismes suggère un couplage fonctionnel entre les astrocytes et les neurones adjacents « sensibles au glucose ». Lors de cette étude, nous avons remarqué chez les souris RIPG1xg1ut2-/- de fond génétique pur C57B1/6, que seul le déclenchement de la prise alimentaire en réponse à l'injection i.p. ou i.c.v. de 2-DG est aboli. Ces données mettent en évidence que suivant le fond génétique de la souris, les mécanismes centraux de glucodétection impliqués dans la régulation de la sécrétion peuvent être indépendants de GLUT2. Summary. Role of transporter GLUT2 in central glucose sensing involved in the control of glucagon secretion and food intake. Central glucose sensors play an important role in the control of glucose homeostasis. These sensors regulate general physiological functions, including food intake, energy expenditure and hormones secretion. So far the cellular and molecular basis of central glucose detection are poorly understood. Hypoglycemia, or cellular glucoprivation by intraperitoneal injection of 2-deoxy¬glucose (2-DG) injection, elicit multiple glucoregulatory responses, in particular glucagon secretion and stimulation of feeding. We previously demonstrated that the normal glucagon response to insulin-induced hypoglycemia was suppressed in mice lacking GLUT2. This indicated the existence of extra-pancreatic, GLUT2-dependent, glucose sensors controllling glucagon secretion. Here, we have demonstrated that the normal glucagon and food intake responses to central glucoprivation, by intracerebroventricular (i.c.v.) injections of 2-DG, were suppressed in mice lacking GLUT2 (RIPG1xglut2-/- mice) indicating that GLUT2 plays a role in central glucose sensing units controlling secretion of glucagon and food intake. Whereas it is etablished that glucose responsive neurons change their firing rate in response to variations of glucose concentrations, the exact mechanism of glucose detection is not established. In particular, it has been suggested that astrocytic cells may be the primary site of glucose detection and that a signal is subsequently transmitted to neurons. To evaluate the respective role of glial and neuronal expression of GLUT2 in central glucodetection, we studied hypoglycemic and glucoprivic responses following cellular glucoprivation in RIPG1xglut2-/- mice reexpressing the transgenic GLUT2 specifially in their astrocytes (pGFAPG2xRIPG1xglut2-/- mice) or their neurons (pSynG2xRIPG1xglut2-/- mice). The increase of food intake after i.p. injection of 2-DG in control mice was not observed in the pGFAPG2xRIPG1xglut2-/- mice. Whereas a strong increase of glucagon secretion was observed in control and pGFAPG2xRIPG1xglut2-/- mice, not glucagonemic response was induced in pSynG2xRIPG1xglut2-/- mice. Our results show that GLUT2 reexpression in glial cells but not in neurons restored glucagon secretion and thus present a strong evidence that glucose detection and the control of glucagon secretion require a coupling between glial cells and neurons. Furthermore, these results show the existence of differents glucose sensors in CNS. Résumé tout public. Rôle du transporteur de glucose GLUT2 dans les mécanismes centraux de glucodétection impliqués dans le contrôle de la sécrétion du glucagon et de la prise alimentaire. Chez les mammifères, en dépit des grandes variations dans l'apport et l'utilisation du glucose, la glycémie est maintenue à une valeur relativement constante d'environ 1 g/l. Cette régulation est principalement sous le contrôle de deux hormones produites par le pancréas l'insuline et le glucagon. A la suite d'un repas, la détection de l'élévation de la glycémie par le pancréas permet la libération pancréatique de l'insuline dans le sang. Cette hormone va alors permettre le stockage dans le foie du glucose sanguin en excès et diminuer ainsi la glycémie. Sans insuline, le glucose s'accumule dans le sang. On parle alors d'hyperglycémie chronique. Cette situation est caractéristique du diabète et augmente les risques de maladies cardiovasculaires. A l'inverse, lors d'un jeûne, la détection de la diminution de la glycémie par le cerveau permet le déclenchement de la prise alimentaire et stimule la sécrétion de glucagon par le pancréas. Le glucagon va alors permettre la libération dans le sang du glucose stocké par le foie. Les effets du glucagon et de la prise de nourriture augmentent ainsi les concentrations sanguines de glucose pour empêcher une diminution trop importante de la glycémie. Une hypoglycémie sévère peut entraîner un mauvais fonctionnement du cerveau allant jusqu'à des lésions cérébrales. Contrairement aux mécanismes pancréatiques de détection du glucose, les mécanismes de glucodétection du cerveau ne sont encore que partiellement élucidés. Dans le laboratoire, nous avons observé, chez les souris transgéniques n'exprimant plus le transporteur de glucose GLUT2, une suppression de la stimulation de la sécrétion du glucagon et du déclenchement de la prise alimentaire en réponse à une hypoglycémie, induite uniquement dans le cerveau. Dans le cerveau, le GLUT2 est principalement exprimé par les astrocytes, cellules gliales connues pour soutenir, nourrir et protéger les neurones. Nous avons alors ré-exprimé spécifiquement le GLUT2 dans les astrocytes des souris transgéniques et nous avons observé que seule la stimulation de la sécrétion du glucagon en réponse à l'hypoglycémie est restaurée. Ces résultats mettent en évidence que la sécrétion du glucagon et la prise alimentaire sont contrôlées par différents mécanismes centraux de glucodétection dépendants de GLUT2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pancreatic beta cells, cyclic AMP-dependent protein kinase regulates many cellular processes including the potentiation of insulin secretion. The substrates for this kinase, however, have not been biochemically characterized. Here we demonstrate that the glucose transporter GLUT2 is rapidly phosphorylated by protein kinase A following activation of adenylyl cyclase by forskolin or the incretin hormone glucagon-like peptide-1. We show that serines 489 and 501/503 and threonine 510 in the carboxyl-terminal tail of the transporter are the in vitro and in vivo sites of phosphorylation. Stimulation of GLUT2 phosphorylation in beta cells reduces the initial rate of 3-O-methyl glucose uptake by approximately 48% but does not change the Michaelis constant. Similar differences in transport kinetics are observed when comparing the transport activity of GLUT2 mutants stably expressed in insulinoma cell lines and containing glutamates or alanines at the phosphorylation sites. These data indicate that phosphorylation of GLUT2 carboxyl-terminal tail modifies the rate of transport. This lends further support for an important role of the transporter cytoplasmic tail in the modulation of catalytic activity. Finally, because activation of protein kinase A stimulates glucose-induced insulin secretion, we discuss the possible involvement of GLUT2 phosphorylation in the amplification of the glucose signaling process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A role for glucose in the control of feeding has been proposed, but its precise physiological importance is unknown. Here, we evaluated feeding behavior in glut2-null mice, which express a transgenic glucose transporter in their beta-cells to rescue insulin secretion (ripglut1;glut2-/- mice). We showed that in the absence of GLUT2, daily food intake was increased and feeding initiation and termination following a fasting period were abnormal. This was accompanied by suppressed regulation of hypothalamic orexigenic and anorexigenic neuropeptides expression during the fast-to-refed transition. In these conditions, however, there was normal regulation of the circulating levels of insulin, leptin, or glucose but a loss of regulation of plasma ghrelin concentrations. To evaluate whether the abnormal feeding behavior was due to suppressed glucose sensing, we evaluated feeding in response to intraperitoneal or intracerebroventricular glucose or 2-deoxy-D-glucose injections. We showed that in GLUT2-null mice, feeding was no longer inhibited by glucose or activated by 2-deoxy-D-glucose injections and the regulation of hypothalamic neuropeptide expression by intracerebroventricular glucose administration was lost. Together, these data demonstrate that absence of GLUT2 suppressed the function of central glucose sensors, which control feeding probably by regulating the hypothalamic melanocortin pathway. Furthermore, inactivation of these glucose sensors causes overeating.