272 resultados para GLIOBLASTOMA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malignant pleural mesothelioma is an aggressive thoracic malignancy associated with exposure to asbestos, and its incidence is anticipated to increase during the first half of this century. Chemotherapy is the mainstay of treatment, yet sufficiently robust evidence to substantiate the current standard of care has emerged only in the past 5 years. This Review summarizes the evidence supporting the clinical activity of chemotherapy, discusses the use of end points for its assessment and examines the influence of clinical and biochemical prognostic factors on the natural history of malignant pleural mesothelioma. Early-phase clinical trials of second-line and novel agents are emerging from an increased understanding of mesothelioma cell biology. Coupled with high-quality translational research, such developments have real potential to improve the outlook of patients at a time of increasing incidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is a malignant astrocytoma of the central nervous system associated with a median survival time of 15 months, even with aggressive therapy. This rapid progression is due in part to diffuse infiltration of single tumor cells into the brain parenchyma, which is thought to involve aberrant interactions between tumor cells and the extracellular matrix (ECM). Here, we test the hypothesis that mechanical cues from the ECM contribute to key tumor cell properties relevant to invasion. We cultured a series of glioma cell lines (U373-MG, U87-MG, U251-MG, SNB19, C6) on fibronectin-coated polymeric ECM substrates of defined mechanical rigidity and investigated the role of ECM rigidity in regulating tumor cell structure, migration, and proliferation. On highly rigid ECMs, tumor cells spread extensively, form prominent stress fibers and mature focal adhesions, and migrate rapidly. As ECM rigidity is lowered to values comparable with normal brain tissue, tumor cells appear rounded and fail to productively migrate. Remarkably, cell proliferation is also strongly regulated by ECM rigidity, with cells dividing much more rapidly on rigid than on compliant ECMs. Pharmacologic inhibition of nonmuscle myosin II–based contractility blunts this rigidity-sensitivity and rescues cell motility on highly compliant substrates. Collectively, our results provide support for a novel model in which ECM rigidity provides a transformative, microenvironmental cue that acts through actomyosin contractility to regulate the invasive properties of GBM tumor cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fumonisin B1 (FB1) is a mycotoxin produced by the fungus Fusarium verticillioides, which commonly infects corn and other agricultural products. Fusarium species can also be found in moisture-damaged buildings, and therefore there may also be human exposure to Fusarium mycotoxins, including FB1. FB1 affects the metabolism of sphingolipids by inhibiting the enzyme ceramide synthase. It is neuro-, hepato- and nephrotoxic, and it is classified as possibly carcinogenic to humans. This study aimed to clarify the mechanisms behind FB1-induced neuro- and immunotoxicity. Four neural and glial cell lines of human, rat and mouse origin were exposed to graded doses of FB1 and the effects on the production of reactive oxygen species, lipid peroxidation, intracellular glutathione levels, cell viability and apoptosis were investigated. Furthermore, the effects of FB1, alone or together with lipopolysaccharide (LPS), on the mRNA and protein expression levels of different cytokines and chemokines were studied in human dendritic cells (DC). FB1 induced oxidative stress and cell death in all cell lines studied. Generally, the effects were only seen after prolonged exposure at 10 and 100 µM of FB1. Signs of apoptosis were also seen in all four cell lines. The sensitivities of the cell lines used in this study towards FB1 may be classified as human U-118MG glioblastoma > mouse GT1-7 hypothalamic > rat C6 glioblastoma > human SH-SY5Y neuroblastoma cells. When comparing cell lines of human origin, it can be concluded that glial cells seem to be more sensitive towards FB1 toxicity than those of neural origin. After exposure to FB1, significantly increased levels of the cytokine interferon-γ (IFNγ) were detected in human DC. This observation was further confirmed by FB1-induced levels of the chemokine CXCL9, which is known to be regulated by IFNγ. During co-exposure of DC to both LPS and FB1, significant inhibitions of the LPS-induced levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1β, and their regulatory chemokines CCL3 and CCL5 were observed. FB1 can thus affect immune responses in DC, and therefore, it is rather likely that it also affects other types of cells participating in the immune defence system. When evaluating the toxicity potential of FB1, it is important to consider the effects on different cell types and cell-cell interactions. The results of this study represent new information, especially about the mechanisms behind FB1-induced oxidative stress, apoptosis and immunotoxicity, as well as the varying sensitivities of different cell types towards FB1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prognosis of patients with glioblastoma, the most malignant adult glial brain tumor, remains poor in spite of advances in treatment procedures, including surgical resection, irradiation and chemotherapy.Genetic heterogeneity of glioblastoma warrants extensive studies in order to gain a thorough understanding of the biology of this tumor. While there have been several studies of global transcript profiling of glioma with the identification of gene signatures for diagnosis and disease management, translation into clinics is yet to happen. Serum biomarkers have the potential to revolutionize the process of cancer diagnosis, grading, prognostication and treatment response monitoring. Besides having the advantage that serum can be obtained through a less invasive procedure, it contains molecules at an extraordinary dynamic range of ten orders of magnitude in terms of their concentrations. While the conventional methods, such as 2DE, have been in use for many years, the ability to identify the proteins through mass spectrometry techniques such as MALDI-TOF led to an explosion of interest in proteomics. Relatively new high-throughput proteomics methods such as SELDI-TOF and protein microarrays are expected to hasten the process of serum biomarker discovery. This review will highlight the recent advances in the proteomics platform in discovering serum biomarkers and the current status of glioma serum markers. We aim to provide the principles and potential of the latest proteomic approaches and their applications in the biomarker discovery process. Besides providing a comprehensive list of available serum biomarkers of glioma, we will also propose how these markers will revolutionize the clinical management of glioma patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of ± 5% and ± 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 × 20 × 20 mm3 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI (nominal voxel volume 10(RL) × 10(AP) × 7.5(SI) mm3), respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or progressing GBM or anaplastic astrocytoma gradus III, and two patients had head and neck cancer. For nine patients (patients 1-9), MRS/MRSI was performed 70-140 min after the second irradiation field, and for one patient (patient 10), the MRSI study began 11 min before the end of the BPA-F infusion and ended 6 min after the end of the infusion. In comparison, single voxel MRS was performed before BNCT, for two patients (patients 3 and 9), and for one patient (patient 9), MRSI was performed one month after treatment. For one patient (patient 10), MRSI was performed four days before infusion. Signals from the tumour spectrum aromatic region were detected on the day of BNCT in three patients, indicating that in favourable cases, it is possible to detect BPA in vivo in the patient’s brain after BNCT treatment or at the end of BPA-F infusion. However, because the shape and position of the detected signals did not exactly match the BPA spectrum detected in the in vitro conditions, assignment of BPA is difficult. The opportunity to perform MRS immediately after the end of BPA-F infusion for more patients is necessary to evaluate the suitability of 1H MRS for BPA detection or quantification for treatment planning purposes. However, it could be possible to use MRSI as criteria in selecting patients for BNCT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malignant astrocytoma includes anaplastic astrocytoma (grade III) and glioblastoma (grade IV). Among them, glioblastoma is the most common primary brain tumor with dismal responses to all therapeutic modalities. We performed a large-scale, genome-wide microRNA (miRNA) (n=756) expression profiling of 26 glioblastoma, 13 anaplastic astrocytoma and 7 normal brain samples with an aim to find deregulated miRNA in malignant astrocytoma. We identified several differentially regulated miRNAs between these groups, which could differentiate glioma grades and normal brain as recognized by PCA. More importantly, we identified a most discriminatory 23-miRNA expression signature, by using PAM, which precisely distinguished glioblastoma from anaplastic astrocytoma with an accuracy of 95%. The differential expression pattern of nine miRNAs was further validated by real-time RT-PCR on an independent set of malignant astrocytomas (n-72) and normal samples (n=7). Inhibition of two glioblastoma-upregulated miRNAs (miR-21 and miR-23a) and exogenous overexpression of two glioblastoma-downregulated miRNAs (miR-218 and miR-219-5p) resulted in reduced soft agar colony formation but showed varying effects on cell proliferation and chemosensitivity. Thus we have identified the miRNA expression signature for malignant astrocytoma, in particular glioblastoma, and showed the miRNA involvement and their importance in astrocytoma development. Modern Pathology (2010) 23, 1404-1417; doi:10.1038/modpathol.2010.135; published online 13 August 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for molecular markers which predict response to chemotherapy is an important aspect of current neuro-oncology research. MGMT promoter methylation is the only proved marker of glioblastoma. The purpose of this study was to assess the effect of topoisomerase expression on glioblastoma survival and study the mechanisms involved. The transcript levels of all isoforms of the topoisomerase family in all grades of diffuse astrocytoma were assessed. A prospective study of patients with glioblastoma treated by a uniform treatment procedure was performed with the objective of correlating outcome with gene expression. The ability of TOP2A enzyme to relax the super coiled plasmid DNA in the presence of temozolomide was evaluated to assess its effect on TOP2A. The temozolomide cyctotoxicity of TOP2A-silenced U251 cells was assessed. The transcript levels of TOP2A, TOP2B, and TOP3A are upregulated significantly in GBM in comparison with lower grades of astrocytoma and normal brain samples. mRNA levels of TOP2A correlated significantly with survival of the patients. Higher TOP2A transcript levels in GBM patients predicted better prognosis (P = 0.043; HR = 0.889). Interestingly, we noted that temozolomide inhibited TOP2A activity in in-vitro enzyme assays. We also noted that siRNA knock down of TOP2A rendered a glioma cell line resistant to temozolomide chemotherapy. We demonstrated for the first time that temozolomide is also a TOP2A inhibitor and established that TOP2A transcript levels determine the chemosensitivity of glioblastoma to temozolomide therapy. Very high levels of TOP2A are a good prognostic indicator in GBM patients receiving temozolomide chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IDH1 mutations are frequent genetic alterations in low-grade diffuse gliomas and secondary glioblastoma (GBM). To validate mutation frequency, IDH1 gene at codon 132 was sequenced in 74 diffusely infiltrating astrocytomas: diffuse astrocytoma (DA; World Health Organization WHO] grade II), anaplastic astrocytoma (AA; WHO grade III), and GBM (WHO grade IV). All cases were immunostained with IDH1-R132H monoclonal antibody. Mutational status was correlated with mutant protein expression, patient age, duration of symptoms, and prognosis of patients with GBM. We detected 31 (41.9%) heterozygous IDH1 mutations resulting in arginine-to-histidine substitution (R132H;CGT-CAT). All 12 DAs (100%), 13 of 14 AAs (92.9%), and 6 of 48 GBMs (12.5%) (5/6 83.3%] secondary, and 1/42 2.4%] primary) harbored IDH1 mutations. The correlation between mutational status and protein expression was significant (P < .001). IDH1 mutation status, though not associated with prognosis of patients with GBM, showed significant association with younger age and longer duration of symptoms in the whole cohort (P < .001). Our study validates IDH1 mutant protein expression across various grades of astrocytoma, and demonstrates a high incidence of IDH1 mutations in DA, AA, and secondary GBM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Recent research on glioblastoma (GBM) has focused on deducing gene signatures predicting prognosis. The present study evaluated the mRNA expression of selected genes and correlated with outcome to arrive at a prognostic gene signature. Methods: Patients with GBM (n = 123) were prospectively recruited, treated with a uniform protocol and followed up. Expression of 175 genes in GBM tissue was determined using qRT-PCR. A supervised principal component analysis followed by derivation of gene signature was performed. Independent validation of the signature was done using TCGA data. Gene Ontology and KEGG pathway analysis was carried out among patients from TCGA cohort. Results: A 14 gene signature was identified that predicted outcome in GBM. A weighted gene (WG) score was found to be an independent predictor of survival in multivariate analysis in the present cohort (HR = 2.507; B = 0.919; p < 0.001) and in TCGA cohort. Risk stratification by standardized WG score classified patients into low and high risk predicting survival both in our cohort (p = <0.001) and TCGA cohort (p = 0.001). Pathway analysis using the most differentially regulated genes (n = 76) between the low and high risk groups revealed association of activated inflammatory/immune response pathways and mesenchymal subtype in the high risk group. Conclusion: We have identified a 14 gene expression signature that can predict survival in GBM patients. A network analysis revealed activation of inflammatory response pathway specifically in high risk group. These findings may have implications in understanding of gliomagenesis, development of targeted therapies and selection of high risk cancer patients for alternate adjuvant therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current treatment for glioblastoma includes temozolomide (TMZ) chemotherapy, yet the mechanism of action of TMZ is not thoroughly understood. Here, we investigated the TMZ-induced changes in the proteome of the glioma-derived cell line (U251) by 2D DIGE. We found 95 protein spots to be significantly altered in their expression after TMZ treatment. MS identified four upregulated spots: aspartyl tRNA synthetase glutathione synthetase, interleukin-1 receptor-associated kinase-4 (IRAK4), and breast carcinoma amplified sequence-1 and one downregulated spot: optineurin. TMZ-induced regulation of these five genes was validated by RT-qPCR andWestern blot analysis. RNAi-mediated knockdown of IRAK4, an important mediator of Toll-like receptors signaling and chemoresistance, rendered the glioma cells resistant to TMZ. High levels of IRAK4 induced upon TMZ treatment resulted in IRAK1 downregulation and inhibition of NFkB pathway. Endogenous IRAK4 protein, but not transcript levels in glioma cell lines, correlated with TMZ sensitivity. Thus, we have identified several TMZ-modulated proteins and discovered an important novel role for IRAK4 in determining TMZ sensitivity of glioma cells through its ability to inhibit Toll-like receptor signaling and NFkB pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma (GBM) is the most aggressive type of brain tumor and shows very poor prognosis. Here, using genome-wide methylation analysis, we show that G-CIMP+ and G-CIMP-subtypes enrich distinct classes of biological processes. One of the hypermethylated genes in GBM, ULK2, an upstream autophagy inducer, was found to be down-regulated in GBM. Promoter hypermethylation of ULK2 was confirmed by bisulfite sequencing. GBM and glioma cell lines had low levels of ULK2 transcripts, which could be reversed upon methylation inhibitor treatment. ULK2 promoter methylation and transcript levels showed significant negative correlation. Ectopic overexpression of ULK2-induced autophagy, which further enhanced upon nutrient starvation or temozolomide chemotherapy. ULK2 also inhibited the growth of glioma cells, which required autophagy induction as kinase mutant of ULK2 failed to induce autophagy and inhibit growth. Furthermore, ULK2 induced autophagy and inhibited growth in Ras-transformed immortalized Baby Mouse Kidney (iBMK) ATG5(+/+) but not in autophagy-deficient ATG5(-/-) cells. Growth inhibition due to ULK2 induced high levels of autophagy under starvation or chemotherapy utilized apoptotic cell death but not at low levels of autophagy. Growth inhibition by ULK2 also appears to involve catalase degradation and reactive oxygen species generation. ULK2 overexpression inhibited anchorage independent growth, inhibited astrocyte transformation in vitro and tumor growth in vivo. Of all autophagy genes, we found ULK2 and its homologue ULK1 were only down-regulated in all grades of glioma. Thus these results altogether suggest that inhibition of autophagy by ULK1/2 down-regulation is essential for glioma development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin like growth factor binding protein 2 (IGFBP2) is highly up regulated in glioblastoma (GBM) tissues and has been one of the prognostic indicators. There are compelling evidences suggesting important roles for IGFBP2 in glioma cell proliferation, migration and invasion. Extracellular IGFBP2 through its carboxy terminal arginine glycine aspartate (RGD) motif can bind to cell surface alpha 5 beta 1 integrins and activate pathways downstream to integrin signaling. This IGFBP2 activated integrin signaling is known to play a crucial role in IGFBP2 mediated invasion of glioma cells. Hence a molecular inhibitor of carboxy terminal domain of IGFBP2 which can inhibit IGFBP2-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of IGFBP2, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I (Library size 1.47 x 10(8)) and Tomlinson J (Library size 1.37 x 10(8)) using human recombinant IGFBP2. After screening we obtained three IGFBP2 specific binders out of which one scFv B7J showed better binding to IGFBP2 at its carboxy terminal domain, blocked IGFBP2-cell surface association, reduced activity of matrix metalloprotease 2 in the conditioned medium of glioma cells and inhibited IGFBP2 induced migration and invasion of glioma cells. We demonstrate for the first time that in vitro inhibition of extracellular IGFBP2 activity by using human scFv results in significant reduction of glioma cell migration and invasion. Therefore, the inhibition of IGFBP2 can serve as a potential therapeutic strategy in the management of GBM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The prognosis of patients bearing high grade glioma remains dismal. Epidermal Growth Factor Receptor (EGFR) is well validated as a primary contributor of glioma initiation and progression. Nimotuzumab is a humanized monoclonal antibody that recognizes the EGFR extracellular domain and reaches Central Nervous System tumors, in nonclinical and clinical setting. While it has similar activity when compared to other anti-EGFR antibodies, it does not induce skin toxicity or hypomagnesemia. Methods A randomized, double blind, multicentric clinical trial was conducted in high grade glioma patients (41 anaplastic astrocytoma and 29 glioblastoma multiforme) that received radiotherapy plus nimotuzumab or placebo. Treatment and placebo groups were well-balanced for the most important prognostic variables. Patients received 6 weekly doses of 200 mg nimotuzumab or placebo together with irradiation as induction therapy. Maintenance treatment was given for 1 year with subsequent doses administered every 3 weeks. The objectives of this study were to assess the comparative overall survival, progression free survival, response rate, immunogenicity and safety. Results The median cumulative dose was 3200 mg of nimotuzumab given over a median number of 16 doses. The combination of nimotuzumab and RT was well-tolerated. The most prevalent related adverse reactions included nausea, fever, tremors, anorexia and hepatic test alteration. No anti-idiotypic response was detected, confirming the antibody low immunogenicity. The mean and median survival time for subjects treated with nimotuzumab was 31.06 and 17.76 vs. 21.07 and 12.63 months for the control group. Conclusions In this randomized trial, nimotuzumab showed an excellent safety profile and significant survival benefit in combination with irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the development of chip-based technology for informative in vitro cancer diagnostics. In the first part of this thesis, I will present my contribution in the development of a technology called “Nucleic Acid Cell Sorting (NACS)”, based on microarrays composed of nucleic acid encoded peptide major histocompatibility complexes (p/MHC), and the experimental and theoretical methods to detect and analyze secreted proteins from single or few cells.

Secondly, a novel portable platform for imaging of cellular metabolism with radio probes is presented. A microfluidic chip, so called “Radiopharmaceutical Imaging Chip” (RIMChip), combined with a beta-particle imaging camera, is developed to visualize the uptake of radio probes in a small number of cells. Due to its sophisticated design, RIMChip allows robust and user-friendly execution of sensitive and quantitative radio assays. The performance of this platform is validated with adherent and suspension cancer cell lines. This platform is then applied to study the metabolic response of cancer cells under the treatment of drugs. Both cases of mouse lymphoma and human glioblastoma cell lines, the metabolic responses to the drug exposures are observed within a short time (~ 1 hour), and are correlated with the arrest of cell-cycle, or with changes in receptor tyrosine kinase signaling.

The last parts of this thesis present summaries of ongoing projects: development of a new agent as an in vivo imaging probe for c-MET, and quantitative monitoring of glycolytic metabolism of primary glioblastoma cells. To develop a new agent for c-MET imaging, the one-bead-one-compound combinatorial library method is used, coupled with iterative screening. The performance of the agent is quantitatively validated with cell-based fluorescent assays. In the case of monitoring the metabolism of primary glioblastoma cell, by RIMChip, cells were sorting according to their expression levels of oncoprotein, or were treated with different kinds of drugs to study the metabolic heterogeneity of cancer cells or metabolic response of glioblastoma cells to drug treatments, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first chapter of this thesis deals with automating data gathering for single cell microfluidic tests. The programs developed saved significant amounts of time with no loss in accuracy. The technology from this chapter was applied to experiments in both Chapters 4 and 5.

The second chapter describes the use of statistical learning to prognose if an anti-angiogenic drug (Bevacizumab) would successfully treat a glioblastoma multiforme tumor. This was conducted by first measuring protein levels from 92 blood samples using the DNA-encoded antibody library platform. This allowed the measure of 35 different proteins per sample, with comparable sensitivity to ELISA. Two statistical learning models were developed in order to predict whether the treatment would succeed. The first, logistic regression, predicted with 85% accuracy and an AUC of 0.901 using a five protein panel. These five proteins were statistically significant predictors and gave insight into the mechanism behind anti-angiogenic success/failure. The second model, an ensemble model of logistic regression, kNN, and random forest, predicted with a slightly higher accuracy of 87%.

The third chapter details the development of a photocleavable conjugate that multiplexed cell surface detection in microfluidic devices. The method successfully detected streptavidin on coated beads with 92% positive predictive rate. Furthermore, chambers with 0, 1, 2, and 3+ beads were statistically distinguishable. The method was then used to detect CD3 on Jurkat T cells, yielding a positive predictive rate of 49% and false positive rate of 0%.

The fourth chapter talks about the use of measuring T cell polyfunctionality in order to predict whether a patient will succeed an adoptive T cells transfer therapy. In 15 patients, we measured 10 proteins from individual T cells (~300 cells per patient). The polyfunctional strength index was calculated, which was then correlated with the patient's progress free survival (PFS) time. 52 other parameters measured in the single cell test were correlated with the PFS. No statistical correlator has been determined, however, and more data is necessary to reach a conclusion.

Finally, the fifth chapter talks about the interactions between T cells and how that affects their protein secretion. It was observed that T cells in direct contact selectively enhance their protein secretion, in some cases by over 5 fold. This occurred for Granzyme B, Perforin, CCL4, TNFa, and IFNg. IL- 10 was shown to decrease slightly upon contact. This phenomenon held true for T cells from all patients tested (n=8). Using single cell data, the theoretical protein secretion frequency was calculated for two cells and then compared to the observed rate of secretion for both two cells not in contact, and two cells in contact. In over 90% of cases, the theoretical protein secretion rate matched that of two cells not in contact.