11 resultados para GLI2
Resumo:
We describe a Brazilian boy with semilobar holoprosencephaly, ectrodactyly, bilateral cleft of lip and palate, and severe mental retardation. The karyotype was normal and the screening for mutations in the genes SHH, TGIF, SIX3, GLI2 TP73L, and DHCR7 did not show any change. This rare condition was described previously in seven male patients. Clinical and genetic aspects are discussed. (C) 2009 Wiley-Liss, Inc.
Resumo:
Mutations in the human GLI2 gene were first reported in association with defective anterior pituitary formation, panhypopituitarism, and forebrain anomalies represented by typical holoprosencephaly (HPE) and holoprosencephaly-like (HPE-L) phenotypes and postaxial polydactyly. Subsequently, anophthalmia plus orbital anomalies, heminasal aplasia, branchial arch anomalies and polydactyly have also been incorporated into the general phenotype. Here we described six Brazilian patients with phenotypic manifestations that range from isolated cleft lip/palate with polydactyly, branchial arch anomalies to semi-lobar holoprosencephaly. Novel sequence variants were found in the GLI2 gene in patients with marked involvement of the temporomandibular joint (TMJ), a new clinical finding observed with mutations of this gene. Clinical, molecular and genetic aspects are discussed.
Resumo:
Short-rib polydactyly syndromes (SRPS I-V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis.
Resumo:
Studies in both vertebrates and invertebrates have identified proteins of the Hedgehog (Hh) family of secreted signaling molecules as key organizers of tissue patterning. Initially discovered in Drosophila in 1992, Hh family members have been discovered in animals with body plans as diverse as those of mammals, insects and echinoderms. In humans three related Hh genes have been identified: Sonic, Indian and Desert hedgehog (Shh, Ihh and Dhh). Transduction of the Hh signal to the cytoplasm utilizes an unusual mechanism involving consecutive repressive interactions between Hh and its receptor components, Patched (Ptc) and Smoothened (Smo). Several cytoplasmic proteins involved in Hh signal transduction are known in Drosophila, but mammalian homologs are known only for the Cubitus interruptus (Ci) transcription factor (GLI(1-3)) and for the Ci/GLI-associated protein, Suppressor of Fused (Su(fu)). In this study I analyzed the mechanisms of how the Hh receptor Ptc regulates the signal transducer Smo, and how Smo relays the Shh signal from the cell surface to the cytoplasm ultimately leading to the activation of GLI transcription factors. In Drosophila, the kinesin-like protein Costal2 (Cos2) is required for suppression of Hh target gene expression in the absence of ligand, and loss of Cos2 causes embryonic lethality. Cos2 acts by bridging Smo to the Ci. Another protein, Su(Fu) exerts a weak suppressive influence on Ci activity and loss of Su(Fu) causes subtle changes in Drosophila wing pattern. This study revealed that domains in Smo that are critical for Cos2 binding in Drosophila are dispensable for mammalian Smo function. Furthermore, by analyzing the function of Su(Fu) and the closest mouse homologs of Cos2 by protein overexpression and RNA interference I found that inhibition of the Hh response pathway in the absence of ligand does not require Cos2 activity, but instead critically depends on the activity of Su(Fu). These results indicate that a major change in the mechanism of action of a conserved signaling pathway occurred during evolution, probably through phenotypic drift made possible by the existence in some species of two parallel pathways acting between the Hh receptor and the Ci/GLI transcription factors. In a second approach to unravel Hh signaling we cloned > 90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase-activity deficient mutants. Using this kinome resource as a screening tool, two kinases, MAP3K10 and DYRK2 were found to regulate Shh signaling. DYRK2 directly phosphorylated and induced the proteasome dependent degradation of the key Hh-pathway regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2.
Resumo:
Here we report on the clinical and genetic data for a large sample of Brazilian patients studied at the Hospital de Reabilitacao de Anomalas Craniofaciais-Universidade de Sao Paulo (HRAC-USP) who presented with either the classic holoprosencephaly or the holoprosencephaly-like (HPE-L) phenotype. The sample included patients without detected mutations in some HPE determinant genes such as SHH, GLI2, SIX3, TGIF, and PTCH, as well as the photographic documentation of the previously reported patients in our Center. The HPE-L phenotype has been also called of HPE ``minor forms"" or ""microforms,"" The variable phenotype, the challenge of genetic counseling, and the similarities to patients with isolated cleft lip/palate are discussed. (c) 2010 Wiley-Liss, Inc.
Resumo:
The etiologies and clinical spectra of HPE are extremely heterogeneous. Here, we report a Brazilian boy with lobar holoprosencephaly who was ascertained in a sample of 60 patients with HPE and HPE-like phenotypes and screened for molecular analysis of the major HPE causative genes: SHH, PTCH, SIX3, GLI2, and TGIF This boy presented a p.K44N (c.132G > T) mutation in exon 2 of the TGIF gene which was inherited from his phenotypically normal mother. This mutation leads to lysine to arginine amino acid change and is predicted to be a damaging mutation. Clinical aspects involving variable phenotypical manifestations in different mutations of TGIF are discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Several biological events are controlled by Hedgehog (Hh) signaling, including osteoblast phenotype development. This study aimed at evaluating the gene expression profile of human mesenchymal stem cells (hMSCs) treated with the Hh agonist, purmorphamine, focusing on Hh signaling and osteoblast differentiation. hMSCs from bone marrow were cultured in non-osteogenic medium with or without purmorphamine (2 mu M) for periods of up to 14 days. Purmorphamine up-regulated gene expression of the mediators of Hh pathway, SMO, PTCH1, GLI1, and GLI2. The activation of Hh pathway by purmorphamine increased the expression of several genes (e.g., RUNX2 and BMPs) related to osteogenesis. Our results indicated that purmorphamine triggers Hh signaling pathway in hMSCs, inducing an increase in the expression of a set of genes involved in the osteoblast differentiation program. Thus, we conclude that Hh is a crucial pathway in the commitment of undifferentiated cells to the osteoblast lineage. J. Cell. Biochem. 113: 204208, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Abnormal Hedgehog signaling is associated with human malignancies. Smo, a key player of that signaling, is the most suitable target to inhibit this pathway. To this aim several molecules, antagonists of Smo, have been synthesized, and some of them have started the phase I in clinical trials. Our hospital participated to one of these studies which investigated the oral administration of a new selective inhibitor of Smo (SMOi). To evaluate ex vivo SMOi efficacy and to identify new potential clinical biomarkers of responsiveness, we separated bone marrow CD34+ cells from 5 acute myeloid leukemia (AML), 1 myelofibrosis (MF), 2 blastic phases chronic myeloid leukemia (CML) patients treated with SMOi by immunomagnetic separation, and we analysed their gene expression profile using Affimetrix HG-U133 Plus 2.0 platform. This analysis, showed differential expression after 28 days start of therapy (p-value ≤ 0.05) of 1,197 genes in CML patients and 589 genes in AML patients. This differential expression is related to Hedgehog pathway with a p-value = 0.003 in CML patients and with a p-value = 0.0002 in AML patients, suggesting that SMOi targets specifically this pathway. Among the genes differentially expressed we observed strong up-regulation of Gas1 and Kif27 genes, which may work as biomarkers of responsiveness of SMOi treatment in CML CD34+ cells whereas Hedgehog target genes (such as Smo, Gli1, Gli2, Gli3), Bcl2 and Abca2 were down-regulated, in both AML and CML CD34+ cells. It has been reported that Bcl-2 expression could be correlated with cancer therapy resistance and that Hedgehog signaling modulate ATP-binding (ABC) cassette transporters, whose expression has been correlated with chemoresistance. Moreover we confirmed that in vitro SMOi treatment targets Hedgehog pathway, down-regulate ABC transporters, Abcg2 and Abcb1 genes, and in combination with tyrosine kinase inhibitors (TKIs) could revert the chemoresistance mechanism in K562 TKIs-resistant cell line.
Resumo:
TGF-β plays an important role in differentiation and tissue morphogenesis as well as cancer progression. However, the role of TGF-β in cancer is complicate. TGF-β has primarily been recognized as tumor suppressor, because it can directly inhibit cell proliferation of normal and premalignant epithelial cell. However, in the last stage of tumor progression, TGF-β functions as tumor promoter to enhance tumor cells metastatic dissemination and expands metastatic colonies. Currently, the mechanism of how TGF-β switches its role from tumor suppressor to promoter still remains elusive. Here we identify that overexpression of 14-3-3ζ inhibits TGF-β’s cell cytostatic program through destabilizing p53 in non-transformed human mammary epithelial cells. Mechanistically, we found that 14-3-3ζ overexpression leads to 14-3-3σ downregulation, thereby activates PI3K/Akt signaling pathway and degrades p53, and further inhibits TGF-β induced p21 expression and cell cytostatic function. In addition, we found that overexpression of 14-3-3ζ promotes TGF-β induced breast cancer cells bone metastatic colonization through stabilizing Gli2, which is an important co-transcriptional factor for p-smad2 to activate PTHrP expression and bone osteolytic effect. Taken together, we reveal a novel mechanism that 14-3-3ζ dictates the tumor suppressor or metastases promoter activities of TGF-β signaling pathway through switching p-smad2 binding partner from p53 to Gli2. The expected results will not only provide us the better understanding of the important role of 14-3-3ζ in the early stage of breast cancer development, but also deeply impact our knowledge of signaling mechanisms underlying the complex roles of TGF-β in cancer, which will give us a more accurate strategy to determine when and how anti-TGF-β targeted therapy might be effective.