525 resultados para GLASSY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homalodisca vitripennis ( Germar) ( Hemiptera: Cicadellidae), the glassy- winged sharpshooter, is one of the most important vectors of the bacterium, Xylella fastidiosa subsp. piercei ( Xanthomonadales: Xanthomonadaceae) that causes Pierce's Disease in grapevines in California. In the present study we report a new method for studying pathogen transmission or probing behavior of H. vitripennis. When confined, H. vitripennis attempt to probe the surface of sterile containers 48 hours post- acquisition of X. f. piercei. The saliva deposited during attempted feeding probes was found to contain X. f. piercei. We observed no correlation between X. f. piercei titers in the foregut of H. vitripennis that fed on Xylella- infected grapevines and the presence of this bacterium in the deposited saliva. The infection rate after a 48 h post- acquisition feeding on healthy citrus and grapevines was observed to be 77% for H. vitripennis that fed on grapevines and 81% for H. vitripennis that fed on citrus, with no difference in the number of positive probing sites from H. vitripennis that fed on either grapevine or citrus. This method is amenable for individual assessment of X. f. piercei- infectivity, with samples less likely to be affected by tissue contamination that is usually present in whole body extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrofurazone (NF) presents activity against Chagas' disease, yet it has a high toxicity. Its analog, hydroxymethylnitrofurazone (NFOH), is more potent against Trypanosoma cruzi and much less toxic than the parent drug, NF. The electrochemical reduction of NFOH in an aqueous medium using a glassy carbon electrode (GCE) is presented. By cyclic voltammetry in anacidic medium, one irreversible reduction peak related to hydroxylamine derivative formation was registered, being linearly pH dependent. However, from pH > 7, a reversible reduction peak at a more positive potential appears and corresponds to the formation of a nitro radical anion. The radical-anion kinetic stability was evaluated by Ip(a)/Ip(c) the current ratio of the R-NO(2)/R-NO(2)-redox couple. The nitro radical anion decays with a second-order rate constant (k(2)) of 6.07, 2.06, and 1.44(X 10(3)) L mol(-1) s(-1) corresponding to pH 8.29, 9.29, and 10.2, respectively, with a corresponding half-time life (t(1/2)) of 0.33, 0.97, and 1.4 s for each pH value. By polishing the GCE surface with diamond powder and comparing with the GCE surface polished with alumina, it is shown that the presence of alumina affects the lifetime of the nitro radical anion. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3130082] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF(2) glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of beta-PbF(2) crystallites, with the indication of incorporating reduced lead ions (Pb(+)), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalytic reduction of hydrogen peroxide on a glassy carbon (GC) electrode modified with a ruthenium oxide hexacyanoferrate (RuOHCF) was investigated using rotating disc electrode (RDE) voltammetry aiming to improve the performance of the sensor for hydrogen peroxide detection. The influence of parameters such as rotation speed, film thickness and hydrogen peroxide concentration indicated that the rate of the cross-chemical reaction between Ru(II) centres immobilized into the film and hydrogen peroxide controls the overall process. The kinetic regime could be classified as LSk mechanism, according to the diagnostic table proposed by Albery and Hillman, and the kinetic constant of the mediated process was found to be 706 mol(-1) cm(3) s(-1). In the LSk case the reaction layer is located at a finite layer close to the modifier layer/solution interface

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations of the glass-forming liquid 2Ca(NO(3))(2)center dot 3KNO(3) (CKN) were performed from high temperature liquid states down to low temperature glassy states at six different pressures from 10(-4) to 5.0 GPa. The temperature dependence of the structural relaxation time indicates that the fragility of liquid CKN changes with pressure. In line with recent proposal [Scopigno , Science 302, 849 (2003)], the change on liquid fragility is followed by a proportional change of the nonergodicity factor of the corresponding glass at low temperature. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrooxidative behavior of citalopram (CTL) in aqueous media was studied by cyclic voltammetry (CV) and square-wave voltammetry (SWV) at a glassy-carbon electrode. The electrochemical behaviour of CTL involves two electrons and two protons in the irreversible and diffusion controlled oxidation of the tertiary amine group. The maximum analytical signal was obtained in a phosphate buffer (pH ¼ 8.2). For analytical purposes, an SWV method and a flow-injection analysis (FIA) system with amperometric detection were developed. The optimised SWV method showed a linear range between 1.10 10 5–1.20 10 4 molL 1, with a limit of detection (LOD) of 9.5 10 6 molL 1. Using the FIA method, a linear range between 2.00 10 6–9.00 10 5 molL 1 and an LODof 1.9 10 6 molL 1 were obtained. The validation of both methods revealed good performance characteristics confirming applicability for the quantification of CTL in several pharmaceutical products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the Pseudo phase plane (PPP) method for detecting the existence of a nanofilm on the nitroazobenzene-modified glassy carbon electrode (NAB-GC) system. This modified electrode systems and nitroazobenze-nanofilm were prepared by the electrochemical reduction of diazonium salt of NAB at the glassy carbon electrodes (GCE) in nonaqueous media. The IR spectra of the bare glassy carbon electrodes (GCE), the NAB-GC electrode system and the organic NAB film were recorded. The IR data of the bare GC, NAB-GC and NAB film were categorized into five series consisting of FILM1, GC-NAB1, GC1; FILM2, GC-NAB2, GC2; FILM3, GC-NAB3, GC3 and FILM4, GC-NAB4, GC4 respectively. The PPP approach was applied to each group of the data of unmodified and modified electrode systems with nanofilm. The results provided by PPP method show the existence of the NAB film on the modified GC electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to characterize the nanofilm consisting of the benzoic acid-modified glassy carbon (GC) electrode system through multidimensional scaling space analysis. The surface modification is based on the electrochemical reaction between the GC electrode and benzoic acid-diazonium salt (BA-DAS). As a result, the nonofilms regarding the benzoic acid-glassy carbon (BA-GC) electrode surface was obtained. For the analysis of the naonfilm of BC-GC electrode system, the IR spectra of the modified BA-GC electrode surface, GC surface and BA-DAS were recorded in the spectral range of 599.84 – 3996.34 [cm–1]. The IR data vectors of the above three forms were processed by the using the multidimensional scaling space approach to demonstrate the existence of a nanofilm on the modified BA-GC electrode system. Two- and three-dimensional MDS profiles obtained by application of multidimensional scaling approach to the data sets {CG1,...,CG10}, {BA-GC1,...,BA-GC10} and {FILM1,...,FILM10} allow a good recognition of the nanofilm on the modified glassy carbon (GC) electrode system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrooxidative behavior of pravastatin (PRV) in aqueous media was studied by square-wave voltammetry at a glassycarbon electrode (GCE) and at a screen-printed carbon electrode (SPCE). Maximum peak current intensities in a pH 5.0 buffer were obtained at +1.3 V vs. AgCl/Ag and +1.0 V vs. Ag for the GCE and SPCE surface respectively. Validation of the developed methodologies revealed good performance characteristics and confirmed their applicability to the quantification of PRV in pharmaceutical products, without significant sample pretreatment. A comparative analysis between the two electrode types showed that SPCEs are preferred as an electrode surface because of their higher sensitivity and the elimination of the need to clean the electrode’s surface for its renewal, which frequently is, if not always, the rate-limiting step in voltammetric analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sensitive electrochemical sensor was developed by electropolymerization of pyrrole(PY)and molecularly imprinted polymer (MIP)which was synthesized onto a glassy carbon electrode (GCE) in aqueous solution using cyclic voltammetry in the presence of Trimethoprim (TMP) as template molecules. Furthermore,a previous electrode modification was performed by deposition of a suspension of graphene on the electrode's surface. The performance of the imprinted and non-imprinted (NIP) films was evaluated by impedance spectroscopy (EIS) and cyclic voltammetry (CV) of a ferric solution. The molecularly imprinted film exhibited a high selectivity and sensitivity toward TMP. The sensor presented a linear range, between peak current intensity and logarithm of TMP concentration between 1.0x10-6 and 1.0x10-4 M. The results were accurate (with recoveries higher than 94%), precise (with standard deviations less than 5%) and the detection limit was 1.3x10-7 M. The new sensor is selective, simple to construct and easy to operate. The MIP sensor was successfully applied to quantify TMP in urinesamples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of magnetic hysteresis loops in Cu-Al-Mn alloys of different Mn content at low temperatures are presented. The loops are smooth and continuous above a certain temperature, but exhibit a magnetization discontinuity below that temperature. Scaling analysis suggest that this system displays a disorder-induced phase transition line. Measurements allow one to determine the critical exponents ß=0.03±0.01 and ß¿=0.4±0.1, which coincide with those reported recently in a different system, thus supporting the existence of universality for disorder-induced critical points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BaFe10.4Co0.8Ti0.8O19 magnetic fine particles exhibit most of the features attributed to glassy behavior, e.g., irreversibility in the hysteresis loops and in the zero-field-cooling and field-cooling curves extends up to very high fields, and aging and magnetic training phenomena occur. However, the multivalley energy structure of the glassy state can be strongly modified by a field-cooling process at a moderate field. Slow relaxation experiments demonstrate that the intrinsic energy barriers of the individual particles dominate the behavior of the system at high cooling fields, while the energy states corresponding to collective glassy behavior play the dominant role at low cooling fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Comment affirms that no phase transition occurs in spin-glass systems with an applied magnetic field. However, only according to the droplet model is this result expected. Other models do not predict this result and, consequently, it is under current discussion. In addition, we show how the experimental results obtained in our system correspond to a cluster glass rather than to a true spin glass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge ordered La1/3Sr2/3FeO3−δ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M¨ossbauer, and polarized neutron studies. A complex scenario of short-range charge and magnetic ordering is realized from the polarized neutron studies in nanocrystalline specimen. This short-range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+ and Fe5+ compared to bulk counterpart as evident in the M¨ossbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+ and Fe5+ are about 3.15 μB and 1.57 μB for bulk, and 2.7 μB and 0.53 μB for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass-like transition around ∼65 K, below which EB appears. Overall results propose that finite-size effect directs the complex glassy magnetic behavior driven by unconventional short-range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.