170 resultados para GINGIVA
Resumo:
Perforation of the root canal during insertion of an intracanal post is a complication of endodontic therapy. Mineral trixoide aggregate (MTA) has been successfully used a sealer in these situations. This material has recently been formulated in white color, allowing its application in areas of esthetic concern. This is a clinical case report of a root perforation sealed with gray MTA that resulted in discoloration of the marginal gingiva. Treatment consisted of replacing gray MTA with white MTA with the aid of a dental operating microscope, producing satisfactory esthetic results.
Resumo:
Gingival mucosae of man and the adult Cebus apella monkey were fixed for 3 hr in modified Karnovsky fixative containing 2.5% glutaraldehyde, 2% formaldehyde in 0.1 M sodium phosphate buffer (pH=7.4). The specimens were postfixed in 1% osmium tetroxide in 0.1 M sodium phosphate buffer at 4°C for 2 hr, dehydrated in a graded alcohol series and embedded in Epon 812. Thick sections of 1-3 μm and ultrathin sections of 40-80 nm in thickness were cut with glass knives on an LKB ultramicrotome. The thick sections were stained with toluidine blue solution, and the grids were stained with uranyl acetate and lead citrate and examined under a Philips EM-301 electron microscope. Our observations permitted us to conclude that: both gingival mucosae, of man and the Cebus apella monkey, have lamellar nerve endings; these corpuscles are localized in the papillar space of the epithelium and do not contact closely with the basement membrane; the nerve endings are composed of an afferent fiber which subdivides several times and forms irregular flattened or discoidal expansions; the laminae of the lamellar cells are very thin near the terminal axon and are larger and irregular in shape at the peripheral portion of the corpuscle; the terminal axon shows abundant mitochondria, myelin figures, clear vesicles, and multivesicular bodies; between the axoplasm membrane and adjacent cytoplasmic lamina and between the lamellae, small desmosome type junctions are noted; and the cytoplasmic material of the lamellae cells is characterized by the presence of numerous microfilaments, microtubules, mitochondria, rough endoplasmic reticulum, and caveolae.
Resumo:
Cyclosporin A (CsA) is used as an immunosuppressive agent and its prominent side effect is the induction of gingival overgrowth, which remains a significant problem. The risk factors appraised include the duration of treatment. However, there are no stereological and biochemical studies exploring the effects of long-term CsA therapy on gingival tissue. The purpose of the present study was to investigate the level of TGF-beta1 in saliva and describe the densities of fibroblasts and collagen fibers in the gingival tissue of rats treated with CsA for long periods. Rats were treated for 60, 120, 180 and 240 days with a daily subcutaneous injection of 10 mg/kg of body weight of CsA. At the end of the experimental periods, saliva was collected for the determination of TGF-beta1 levels. After histological processing, the oral epithelium and the connective tissue area were measured as well as the volume densities of fibroblasts (Vf) and collagen fibers (Vcf). After 60 and 120 days of CsA treatment, there was a significant increase in Vf and Vcf as well as a significant increase in TGF-beta1 levels. After 180 and 240 days, reduction in the gingival overgrowth associated with significant decreases in the level of TGF-beta1, and also decreased Vf and Vcf, were observed. The data presented here suggest that after long-term therapy, a decrease in TGF-beta1 levels occurs, which might contribute to an increase in the proteolytic activity of fibroblasts in the gingiva, favoring the normality of extracellular matrix synthesis.
Resumo:
The purpose of this retrospective study was to associate the amount of keratinized gingiva present in adolescents prior to orthodontic treatment to the development of gingival recessions after the end of treatment. The sample consisted of the intra-oral photographs and orthodontic study models from 209 Caucasian patients with a mean age of 11.20 ± 1.83 years on their initial records and 14.7 ± 1.8 years on their final records. Patients were either Angle Class I or II and were submitted to non-extraction orthodontic treatment. Gingival recession was evaluated by visual inspection of the lower incisors and canines as seen in the initial and final study models and intra-oral photographs. The amount of recession was quantified using a digital caliper and the observed post-treatment gingival margin alterations were classified as unaltered, coronal migration of the gingival margin or apical migration of the gingival margin. The width of the keratinized gingiva was measured from the mucogingival line to the gingival margin on the pre-treatment photographs. The teeth that developed gingival recession and those that did not have their gingival margin position changed did not differ in relation to the initial amount of keratinized gingiva (3.00 ± 0.61 and 3.5 ± 0.86 mm, respectively). Paradoxically, teeth that presented a coronal migration of the gingival margin had a smaller initial amount of keratinized gingiva (2.26 ± 0.31 mm). The mean amount of initial keratinized gingiva did not predispose lower incisors and canines to gingival recession.
Resumo:
Background: Odontogenic tumors are lesions that are derived from remnants of the components of the developing tooth germ. The calcifying cystic odontogenic tumor or calcifying odontogenic cyst is a benign cystic neoplasm of odontogenic origin that is characterized by an ameloblastoma-like epithelium and ghost cells. Calcifying cystic odontogenic tumor may be centrally or peripherally located, and its ghost cells may exhibit calcification, as first described by Gorlin in 1962. Most peripheral calcifying cystic odontogenic tumors are located in the anterior gingiva of the mandible or maxilla. Case presentation. Authors report a rare case of a peripheral calcifying cystic odontogenic tumor of the maxillary gingiva. A 39-year-old male patient presented with a fibrous mass on the attached buccal gingiva of the upper left cuspid teeth. It was 0.7-cm-diameter, painless and it was clinically diagnosed as a peripheral ossifying fibroma. After an excisional biopsy, the diagnosis was peripheric calcifying cystic odontogenic tumor. The patient was monitored for five years following the excision, and no recurrence was detected. Conclusions: All biopsy material must be sent for histological examination. If the histological examination of gingival lesions with innocuous appearance is not performed, the frequency of peripheral calcifying cystic odontogenic tumor and other peripheral odontogenic tumors may be underestimated. © 2012 Lima et al.; licensee BioMed Central Ltd.
Resumo:
Background: Peripheral odontoma arising in the extraosseous soft tissues is rare and if not removed early, may enlarge over time and eventually erupt in the oral cavity. Case presentation: A 15-year-old girl presented with “denticles on the gingiva”. During the intraoral examination, seven small tooth-like structures were found. These were exposed in the anterior left gingiva between the permanent maxillary lateral incisor and canine teeth, and the left first premolar was absent. Radiographic examination revealed irregular tooth-like structures without evidence of bone involvement. Conclusion: The lesion was surgically removed, and the specimens were analyzed histopathologically. The diagnosis of compound odontoma was established. Clinical significance: This is the twelfth reported case of peripheral odontoma in the gingiva and the first one that erupted in the oral cavity.
Resumo:
BACKGROUND: Metastasis of a malignant tumor to the oral cavity is rare, but it can be the first manifestation of a primary tumor. METHODS: The clinicopathologic features of a gingival metastasis originating from lung adenocarcinoma in a female patient are described. A 57-year-old woman showed a rapidly growing, painless, exophytic mass in the left mandibular gingiva. The whole lesion was excised, and histologic and immunohistochemical analyses were performed. RESULTS: The histopathologic sections showed a proliferation of poorly differentiated spindle and pleomorphic cells. Because the differentiation between carcinoma and sarcoma of spindle cell tumors was difficult, additional immunohistochemical evaluation was performed. The intraoral healing after tumor removal was uneventful. The discrepancy between the histopathologic results and the clinical findings led to a thorough examination by the patient's physician. Finally, a biopsy of the lungs confirmed a poorly differentiated adenocarcinoma with multiple metastases, including the oral cavity. CONCLUSIONS: An exophytic lesion on the gingiva can be the first sign of metastatic adenocarcinoma to the oral mucosa. This case emphasizes that even apparently benign-looking gingival lesions in anamnestically healthy patients need to be examined histopathologically.
Scarring of gingiva and alveolar mucosa following apical surgery: a visual assessment after one year
Resumo:
Nitric oxide is known to be an important inflammatory mediator, and is implicated in the pathophysiology of a range of inflammatory disorders. The aim of this study was to determine the localization and distribution of endothelial NOS (NOS-II) in human gingival tissue, and to ascertain if human gingival fibroblasts express NOS-II when stimulated with interferon gamma (IFN-gamma) and bacterial lipopolysaccharide (LPS). The distribution of NOS-II in inflamed and non-inflamed specimens of human gingivae was studied using a monoclonal antibody against nitric oxide synthase II. Cultures of fibroblasts derived from healthy human gingivae were used for the cell culture experiments. The results from immunohistochemical staining of the tissues indicated an upregulation of NOS-II expression in inflamed compared to non-inflamed gingival tissue. Fibroblasts and inflammatory cells within the inflamed connective tissue were positively stained for NOS-II. In addition, basal keratinocytes also stained strongly for NOS-II, in both healthy and inflamed tissue sections. When cultured human gingival fibroblasts were stimulated by INF-gamma and Porphyromonas gingivalis LPS, NOS-II was more strongly expressed than when the cells were exposed to LPS or IFN-gamma alone. These data suggest that, as for other inflammatory diseases, NO plays a role in the pathophysiology of periodontitis.
Resumo:
For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials.
Resumo:
Periodontal Disease affects the supporting structures of the teeth and is initiated by a microbial biofilm called dental plaque. Severity ranges from superficial inflammation of the gingiva (gingivitis) to extensive destruction of connective tissue and bone leading to tooth loss (periodontitis). In periodontitis the destruction of tissue is caused by a cascade of microbial and host factors together with proteolytic enzymes. Matrix metalloproteinases (MMPs) are known to be central mediators of the pathologic destruction in periodontitis. Initially plaque bacteria provide pathogen-associated molecular patterns (PAMPs) which are sensed by Toll-like receptors (TLRs), and initiate intracellular signaling cascades leading to host inflammation. Our aim was to characterize TNF-α (tumor necrosis factor-alpha) and its type I and II receptors in periodontal tissues, as well as, the effects of TNF-α, IL-1β (interleukin-1beta) and IL-17 on the production and/or activation of MMP-3, MMP-8 and MMP-9. Furthermore we mapped the TLRs in periodontal tissues and assessed how some of the PAMPs binding to the key TLRs found in periodontal tissues affect production of TNF-α and IL-1β by gingival epithelial cells with or without combination of IL-17. TNF-α and its receptors were detected in pericoronitis. Furthermore, increased expression of interleukin-1β and vascular cell adhesion molecule-1 was found as a biological indicator of TNF-α ligand-receptor interaction. MMP-3, -8, and 9 were investigated in periodontitis affected human gingival crevicular fluid and gingival fibroblasts produced pro-MMP-3. Following that, the effect of IL-17 was studied on MMP and pro-inflammatory cytokine production. IL-17 was increased in periodontitis and up-regulated IL-1β, TNF-α, MMP-1 and MMP-3. We continued by demonstrating TLRs in gingival tissues, in which significant differences between patients with periodontitis and healthy controls were found. Finally, enzyme-linked immunosorbent assays were performed to show that the gingival cells response to inflammatory responses in a TLR-dependent manner. Briefly, this thesis demonstrates that TLRs are present in periodontal tissues and present differences in periodontitis compared to healthy controls. The cells of gingival tissues respond to inflammatory process in a TLR-dependent manner by producing pro-inflammatory cytokines. During the destruction of periodontal tissues, the release (IL-1β and TNF-α) and co-operation with other pro-inflammatory cytokines (IL-17), which in turn increase the inflammation and thus be more harmful to the host with the increased presence of MMPs (MMP-1, MMP-3, MMP-8, MMP-9) in diseased over healthy sites.