1000 resultados para GIK17036-1
Resumo:
The Red Sea is a very young ocean, and is one of the most interesting areas on Earth (ocean in statu nascendi). It is the only ocean where hydrothermal activity associated with ore formation occurs in a sterile environment (anoxic, hot, saline). In addition, its geographical position means that it is predestined to record the monsoonal history of the region in detailed sedimentary sequences. The major aim of the present project is to investigate the dynamics of hydrothermal systems in selected Deeps (Atlantis-II, Discovery, Kebrit, Al Wajh), Additional palaeoceanographic and microbiological questions should also be addressed. Specific aims are: 1. To study the hydrographic changes in individual Deeps (hydrothermal region Atlantis-II) and to investigate the causes of the temperature increase in the last few years (increased heat flow - higher temperature of the brine supply - higher brine flow rates?). 2.a. To document the influence of the hydrothermal systems on the sedimentary organic matter in the Deeps. In particular, the thermogenic production and migration of hydrocarbons in the sediments will be studied. The complex formation mechanisms (bacterial, thermogenic) of short-chain hydrocarbons (trace gases) will also be examined, 2.b. in addition, the polar and macromolecular fraction in samples from the various deeps will be studied in order to elucidate the formation, structure and source of the macromolecular oil fraction. 3. To clarify the palaeoceanographic conditions, sea-level changes and the climatic history (relationship of the circulation system and nutrient supply to the monsoon) of the southern Red Sea. 4. To separate microorganisms from the brines and to characterise them in terms of their metabolic physiology and ecology, and to describe their taxonomy.
Resumo:
The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.
Resumo:
The modification of peripherally metalated meso-η1-platiniometalloporphyrins, such as trans-[PtBr(NiDAPP)(PPh3)2] (H2DAPP = 5-phenyl-10,20-bis(3‘,5‘-di-tert-butylphenyl)porphyrin), leads to the analogous platinum(II) nitrato and triflato electrophiles in almost quantitative yields. Self-assembly reactions of these meso-platinioporphyrin tectons with pyridine, 4,4‘-bipyridine, or various meso-4-pyridylporphyrins in chloroform generate new multicomponent organometallic porphyrin arrays containing up to five porphyrin units. These new types of supramolecular arrays are formed exclusively in high yields and are stable in solution or in the solid state for extended periods. They were characterized by multinuclear NMR and UV−visible spectroscopy as well as high-resolution electrospray ionization mass spectrometry.