899 resultados para GHZ REPETITION RATE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled-cavity passive harmonic mode-locking of a quantum well based vertical-external-cavity surface-emitting laser has been demonstrated, yielding an output pulse train of 1.5 ps pulses at a repetition rate of 80 GHz and with an average power of 80 mW. Harmonic mode-locking results from coupling between the main laser cavity and a cavity formed within the substrate of the saturable absorber structure. Mode-locking on the second harmonic of the substrate cavity allows a train of 1.1 ps pulses to be generated at a repetition rate of 147 GHz with 40 mW average power. © 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High repetition rate passively mode-locked sources are of significant interest due to their potential for applications including optical clocking, optical sampling, communications and others. Due to their short excited state lifetimes mode-locked VECSELs are ideally suited to high repetition rate operation, however fundamentally mode-locked quantum well-based VECSELs have not achieved repetition rates above 10 GHz due to the limitations placed on the cavity geometry by the requirement that the saturable absorber saturates more quickly than the gain. This issue has been overcome by the use of quantum dot-based saturable absorbers with lower saturation fluences leading to repetition rates up to 50 GHz, but sub-picosecond pulses have not been achieved at these repetition rates. We present a passively harmonically mode-locked VECSEL emitting pulses of 265 fs duration at a repetition rate of 169 GHz with an output power of 20 mW. The laser is based around an antiresonant 6 quantum well gain sample and is mode-locked using a semiconductor saturable absorber mirror. Harmonic modelocking is achieved by using an intracavity sapphire etalon. The sapphire then acts as a coupled cavity, setting the repetition rate of the laser while still allowing a tight focus on the saturable absorber. RF spectra of the laser output show no peaks at harmonics of the fundamental repetition rate up to 26 GHz, indicating stable harmonic modelocking. Autocorrelations reveal groups of pulses circulating in the cavity as a result of an increased tendency towards Q-switched modelocking due to the low pulse energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new dynamic regime in a multisegmented AlGaAs/GaAs DH injection laser has been realised. Generation of bandwidth-limited 100 GHz repetition rate pulses has been demonstrated. This value is claimed to be the largest ever reported for an ultrashort pulse repetition frequency obtained directly from a laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diode-pumped CW mode-locked Nd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an investigation of the mode-locking performance of a two-section external-cavity mode-locked InGaAs quantum-dot laser diode, focusing on repetition rate, pulse duration and pulse energy. The lowest repetition rate to-date of any passively mode-locked semiconductor laser diode is demonstrated (310 MHz) and a restriction on the pulse energy (at 0.4 pJ) for the shortest pulse durations is identified. Fundamental mode-locking from 310 MHz to 1.1 GHz was investigated, and harmonic mode-locking was achieved up to a repetition rate of 4.4 GHz. Fourier transform limited subpicosecond pulse generation was realized through implementation of an intra-cavity glass etalon, and pulse durations from 930fs to 8.3ps were demonstrated for a repetition rate of 1 GHz. For all investigations, mode-locking with the shortest pulse durations yielded constant pulse energies of ∼0.4 pJ, revealing an independence of the pulse energy on all the mode-locking parameters investigated (cavity configuration, driving conditions, pulse duration, repetition rate, and output power). © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A monolithically integrated MLLD-modulator-MOPA is presented generating 12.5 ps pulses. The Mach-Zehnder modulator allows tunable repetition rates from 14 GHz to 109 MHz, and the MOPA boosts the peak power by 3.2 dB. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we synthesized bulk amorphous GeGaS glass by conventional melt quenching technique. Amorphous nature of the glass is confirmed using X-ray diffraction. We fabricated the channel waveguides on this glass using the ultrafast laser inscription technique. The waveguides are written on this glass 100 mu m below the surface of the glass with a separation of 50 ae m by focusing the laser beam into the material using 0.67 NA lens. The laser parameters are set to 350 fs pulse duration at 100 KHz repetition rate. A range of writing energies with translation speeds 1 mm/s, 2 mm/s, 3 mm/s and 4 mm/s were investigated. After fabrication the waveguides facets were ground and polished to the optical quality to remove any tapering of the waveguide close to the edges. We characterized the loss measurement by butt coupling method and the mode field image of the waveguides has been captured to compare with the mode field image of fibers. Also we compared the asymmetry in the shape of the waveguide and its photo structural change using Raman spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a two-stage Ti:sapphire amplifier system which can produce 17-TW/23-fs pulses at a repetition rate 10 MHz. A birefringent plate is used in the regenerative amplifier to alleviate gain narrowing, while an all-reflective cylindrical-mirror-based pulse stretcher and an acousto-optic programmable dispersive filter (AOPDF) are used to compensate for the higher order dispersion of the system.