998 resultados para GEPHYROCAPSA-OCEANICA
Resumo:
Gephyrocapsa oceanica is a cosmopolitan bloom-forming coccolithophore species belonging to the haptophyte order Isochrysidales and family Noëlaerhabdaceae. Exclusively pelagic, G. oceanica is commonly found in modern oceans and in fossil assemblages. Its sister species Emiliania huxleyi is known to possess a haplo-diplontic life cycle, the non-motile diploid coccolith-bearing cells alternating with haploid cells that are motile and covered by non-mineralized organic scales. Since the cytology and ultrastructure of other members of the Noëlaerhabdaceae has never been reported, it is not clear whether these features are common to the family. Here, we report on the ultrastructure of both the non-motile calcifying stage and the non-calcifying motile stage of G. oceanica. We found no significant ultrastructural differences between E. huxleyi and G. oceanica either in the calcifying diploid stage or the haploid phase. The similarities between these two morphospecies demonstrated a high degree of conservation of cytological features. We discuss the significance of these results in the light of the evolution of the Noelaerhabdaceae.
Resumo:
Global change leads to a multitude of simultaneous modifications in the marine realm among which shoaling of the upper mixed layer, leading to enhanced surface layer light intensities, as well as increased carbon dioxide (CO2) concentration are some of the most critical environmental alterations for phytoplankton. In this study, we investigated the responses of growth, photosynthetic carbon fixation and calcification of the coccolithophore Gephyrocapsa oceanica to elevated inline image (51 Pa, 105 Pa, and 152 Pa) (1 Pa ~ 10 µatm) at a variety of light intensities (50-800 µmol photons/m**2/s). By fitting the light response curve, our results showed that rising inline image reduced the maximum rates for growth, photosynthetic carbon fixation and calcification. Increasing light intensity enhanced the sensitivity of these rate responses to inline image, and shifted the inline image optima toward lower levels. Combining the results of this and a previous study (Sett et al. 2014) on the same strain indicates that both limiting low inline image and inhibiting high inline image levels (this study) induce similar responses, reducing growth, carbon fixation and calcification rates of G. oceanica. At limiting low light intensities the inline image optima for maximum growth, carbon fixation and calcification are shifted toward higher levels. Interacting effects of simultaneously occurring environmental changes, such as increasing light intensity and ocean acidification, need to be considered when trying to assess metabolic rates of marine phytoplankton under future ocean scenarios.
Resumo:
The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments1. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange2. The present rise in atmospheric CO2 levels3 causes significant changes in surface ocean pH and carbonate chemistry4. Such changes have been shown to slow down calcification in corals and coralline macroalgae5,6, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.
Resumo:
Two haptophyte algae, Emiliania huxleyi and Gephyrocapsa oceanica, were cultured at different temperatures and salinities to investigate the impact of these factors on the hydrogen isotopic composition of long chain alkenones synthesized by these algae. Results showed that alkenones synthesized by G. oceanica were on average depleted in D by 30 compared to those of E. huxleyi when grown under similar temperature and salinity conditions. The fractionation factor, alpha alkenones-H2O, ranged from 0.760 to 0.815 for E. huxleyi and from 0.741 to 0.788 for G. oceanica. There was no significant correlation of alpha alkenones-H2O with temperature but a positive linear correlation was observed between alpha alkenones-H2O and salinity with ~3 change in fractionation per salinity unit and a negative correlation between alpha alkenones-H2O and growth rate. This suggests that both salinity and growth rate can have a substantial impact on the stable hydrogen isotopic composition of long chain alkenones in natural environments.
Resumo:
All species of coccolithophore appear to respond to perturbations of carbonate chemistry in a different way. Here, we show that the degree of malformation, growth rate and stable isotopic composition of organic matter and carbonate produced by two contrasting species of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) are indicative of differences between their photosynthetic and calcification response to changing DIC levels (ranging from ~1100 to ~7800 µmol/kg) at constant pH (8.13 ± 0.02). Gephyrocapsa oceanica thrived under all conditions of DIC, showing evidence of increased growth rates at higher DIC, but C. braarudii was detrimentally affected at high DIC showing signs of malformation, and decreased growth rates. The carbon isotopic fractionation into organic matter and the coccoliths suggests that C. braarudii utilises a common internal pool of carbon for calcification and photosynthesis but G. oceanica relies on independent supplies for each process. All coccolithophores appear to utilize bicarbonate as their ultimate source of carbon for calcification resulting in the release of a proton. But, we suggest that this proton can be harnessed to enhance the supply of CO2(aq) for photosynthesis either from a large internal HCO3- pool which acts as a pH buffer (C. braarudii), or pumped externally to aid the diffusive supply of CO2 across the membrane from the abundant HCO3- (G. oceanica), likely mediated by an internal and external carbonic anhydrase respectively. Our simplified hypothetical spectrum of physiologies may provide a context to understand different species response to changing pH and DIC, the species-specific delta p and calcite "vital effects", as well as accounting for geological trends in coccolithophore cell size.
Resumo:
The coccolithophore genus Gephyrocapsa contains a cosmopolitan assemblage of pelagic species, including the bloom-forming Gephyrocapsa oceanica, and is closely related to the emblematic coccolithophore Emiliania huxleyi within the Noëlaerhabdaceae. These two species have been extensively studied and are well represented in culture collections, whereas cultures of other species of this family are lacking. We report on three new strains of Gephyrocapsa isolated into culture from samples from the Chilean coastal upwelling zone using a novel flow cytometric single-cell sorting technique. The strains were characterized by morphological analysis using scanning electron microscopy and phylogenetic analysis of 6 genes (nuclear 18S and 28S rDNA, plastidial 16S and tufA, and mitochondrial cox1 and cox3 genes). Morphometric features of the coccoliths indicate that these isolates are distinct from G. oceanica and best correspond to G. muellerae. Surprisingly, both plastidial and mitochondrial gene phylogenies placed these strains within the E. huxleyi clade and well separated from G. oceanica isolates, making Emiliania appear polyphyletic. The only nuclear sequence difference, 1 bp in the 28S rDNA region, also grouped E. huxleyi with the new Gephyrocapsa isolates and apart from G. oceanica. Specifically, the G. muellerae morphotype strains clustered with the mitochondrial β clade of E. huxleyi, which, like G. muellerae, has been associated with cold (temperate and sub-polar) waters. Among putative evolutionary scenarios that could explain these results we discuss the possibility that E. huxleyi is not a valid taxonomic unit, or, alternatively the possibility of past hybridization and introgression between each E. huxleyi clade and older Gephyrocapsa clades. In either case, the results support the transfer of Emiliania to Gephyrocapsa. These results have important implications for relating morphological species concepts to ecological and evolutionary units of diversity.
Resumo:
The coccolithophore genus Gephyrocapsa contains a cosmopolitan assemblage of pelagic species, including the bloom-forming Gephyrocapsa oceanica, and is closely related to the emblematic coccolithophore Emiliania huxleyi within the Noëlaerhabdaceae. These two species have been extensively studied and are well represented in culture collections, whereas cultures of other species of this family are lacking. We report on three new strains of Gephyrocapsa isolated into culture from samples from the Chilean coastal upwelling zone using a novel flow cytometric single-cell sorting technique. The strains were characterized by morphological analysis using scanning electron microscopy and phylogenetic analysis of 6 genes (nuclear 18S and 28S rDNA, plastidial 16S and tufA, and mitochondrial cox1 and cox3 genes). Morphometric features of the coccoliths indicate that these isolates are distinct from G. oceanica and best correspond to G. muellerae. Surprisingly, both plastidial and mitochondrial gene phylogenies placed these strains within the E. huxleyi clade and well separated from G. oceanica isolates, making Emiliania appear polyphyletic. The only nuclear sequence difference, 1 bp in the 28S rDNA region, also grouped E. huxleyi with the new Gephyrocapsa isolates and apart from G. oceanica. Specifically, the G. muellerae morphotype strains clustered with the mitochondrial β clade of E. huxleyi, which, like G. muellerae, has been associated with cold (temperate and sub-polar) waters. Among putative evolutionary scenarios that could explain these results we discuss the possibility that E. huxleyi is not a valid taxonomic unit, or, alternatively the possibility of past hybridization and introgression between each E. huxleyi clade and older Gephyrocapsa clades. In either case, the results support the transfer of Emiliania to Gephyrocapsa. These results have important implications for relating morphological species concepts to ecological and evolutionary units of diversity.
Resumo:
Although long chain alkenones (LCKs) occur widely in lacustrine sediments, their origin is not clear. Here, we report a lacustrine source, the non-calcifying species Chrysotila lamellosa Anand (Haptophyceae), collected and isolated from an inland saline water body, Lake Xiarinur (Inner Mongolia, China). Its alketione pattern is similar to those of coastal marine strains of C lamellosa,but the relationship between U-37(K') index and culture temperature for the lacustrine species is quite different from that of the coastal species. A significant feature of the alkenones in this strain of C lamellosa is a lack of C-38 methyl alkenones, which might be used to distinguish the species from the marine haptophyte species Emiliania huxleyi and Gephyrocapsa oceanica. The higher C-38 tetraunsaturated compound abundance might be another important feature for distinguishing the C lamellosa alkenone producer from the coastal species Isochrysis galbana. This alkenone distribution pattern has been detected in many lakes, which suggests that C lamellosa or a closely related species might be a very common alkenone precursor in lacustrine systems. We examined U-37(K') and U-37(K) values for C lamellosa as a function of culture temperature in a batch culture experiment. The calibration for U-37(K') vs. culture temperature (T) was U-37(K') = 0.0011 x T-2 - 0.0157 x T + 0.1057(n = 14, r(2) = 0.99) from 10 degrees C to 22 degrees C or U-37(K') = 0.0257 x T - 0.2608(n = 9, r(2) = 0.97) from 14 degrees C to 22 degrees C. U-37(K) vs. culture temperature was U-37(K) = 0 0377 x T - 0.5992(n = 14, r(2) = 0.98) from 10 degrees C to 22 degrees C. Our experiments show that the alkenone unsaturation index (U-37(K')) is strongly controlled by culture temperature and can be used for palaeoclimate reconstruction. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Significant synchronous shifts in the chemistry, mineralogy, grain sizes and color of the sediments at 6 m below sea floor (mbsf) at ODP Site 1195 on the Marion Plateau (NE Australia) are interpreted to reflect a major regional paleoceanographic change: the initiation of the southern province of the Great Barrier Reef (GBR). The onset of this massive carbonate production centre nearby resulted primarily in increased deposition of carbonate-rich sediments of neritic origin. Both sedimentation rate and terrigenous input record a coincident decline attributed to inshore trapping of materials behind the reefs. Our best estimate places the development of reef framework in the southern part of the GBR between 560 and 670 kyr B.P., based on an age model combining magnetostratigraphic and biostratigraphic data. The proposed estimation agrees with previous studies reporting an age between 500 and 930 kyr B.P., constraining more tightly their results. However, it does not support research placing the birth of the GBR in Marine Isotope Stage (MIS) 11 (~400 kyr), nor the theory of a worldwide modern barrier reef development at that time.
Resumo:
Calcareous nannofossil and planktic foraminiferal assemblages from ODP Hole 1210A in the northwestern Pacific Ocean were used to reconstruct surface-water conditions for the past 500 kyr. Stratigraphic control was provided by calcareous nannofossil events that are thought to be synchronous over a broad range of latitudes. Calcareous nannofossil and planktic foraminiferal assemblages and abundance patterns indicate the unlikelihood of long term (Milankovitch-scale) latitudinal shifts of the Kuroshio Extension over the last 500 kyr and illustrate two successive surface water-mass states, one that prevailed prior to 300 ka and one that existed after 300 ka. The relative abundance of very small placoliths and the absolute abundance of the upper photic zone (UPZ) coccolith species decrease abruptly at approximately 300 ka. The relative abundance of the lower photic zone (LPZ) species Florisphaera profunda greatly increases at the same time, although intervals during which the relative abundance of this taxon is very low or absent also occur prior to 300 ka. The absolute abundance of planktic foraminifera gradually increased after the 300-ka boundary, including peaks of Globoconella inflata. These assemblage and abundance changes suggest significant modifications to the surface water-mass structure. Surface water was weakly stratified prior to 300 ka, but alternated between intensely stratified and vertically mixed after 300 ka. Changes in the surface water-mass structure suggest an intensification of the East Asian summer and winter monsoon after 300 ka.
Resumo:
Calcareous nannofossil assemblages were studied from Ocean Drilling Program Holes 1150A, 1150B, 1151A, 1151C, and 1151D in order to estimate the age of sediments drilled in the Japan Trench of the western Pacific Ocean. The abundance and species diversity of nannofossil flora are generally low but are sufficient to show that the sedimentary sequences range from Quaternary to Miocene in age (nannofossil Zones CN15-CN3). The abundance of Coccolithus pelagicus, a cold-water indicator, was studied from sediments younger than 3.83 Ma from both Holes 1150A and 1151A in order to elucidate past climate conditions. Between 3.83 and 2.82 Ma, the abundance of C. pelagicus was generally low, but abundance increased significantly after 2.82 Ma. In agreement with previous studies, this increase appears to be related to a change in the current system around the western Pacific Ocean and eastern Atlantic Ocean that occurred in response to the final elevation of the Isthmus of Panama.
Resumo:
Preliminary results of the biostratigraphic analysis of calcareous nannofossils recovered from Ocean Drilling Program Leg 128, Sites 798 and 799, provide clues to the Quaternary oceanography of the Japan Sea. The distribution of calcareous nannofossils from the Quaternary sediments at Site 798 (903 m water depth) may record the position of an Oceanographic frontal boundary between warm water derived from a branch of the Kuroshio Current as it entered the Japan Sea through the Tsushima Straits to the south, and colder water introduced into the western portion of the Japan Sea derived from the winter chilling of northern Japan Sea surface waters. This Oceanographic front probably oscillated north-south over Site 798 in response to glacial/interglacial cycles, or perhaps to some other climatic event or combination of events unique to the Japan Sea. During the last 1.5 m.y., six major intervals are recognized when the Oceanographic front may have been north of Site 798 separated by five major intervals when the frontal boundary may have been south of the site. These migrations were centered around approximately 0.125, 0.29, 0.56, 0.62, 0.85, 0.91, 0.98, 1.0, 1.11, and 1.5 Ma, which correspond to the boundaries separating nannofossil-rich sediments from barren or nearly barren, low-carbonate intervals. Nannofossil-rich intervals may represent times when the frontal boundary was north of Site 798, and the site was above the CCD. Barren or nearly barren intervals represent times when the frontal boundary may have been south of Site 798 and the CCD was probably higher. The distribution of calcareous nannofossils at Site 799 (2073 m water depth) appears to be controlled more by the depth of the CCD than by any climatic effects. The FOD (first occurrence datum) of Emiliania huxleyi, the LOD (last occurrence datum) of Psuedoemiliania lacunosa, Helicosphaera sellii, Calcidiscus macintyrei (10 ?m), and the FOD and LOD of Reticulofenestra asanoi are recognized from Site 798 cores. The LOD of P. lacunosa is observed in sediments from Site 799. Only in the sediments younger than 1.5 Ma are the nannofossils from Sites 798 and 799 preserved well enough and sufficiently numerous for age dating and paleoceanographic conjecture. In-situ dissolution in older sediments at both sites precludes any dating or paleoenvironmental interpretations.
Resumo:
In order to reconstruct the monsoonal variability during the late Holocene we investigated a complete, annually laminated sediment record from the oxygen minimum zone (OMZ) off Pakistan for oxygen isotopes of planktic foraminifera and alkenone-derived sea surface temperatures (SST). Significant SST changes of up to 3°C which cannot be explained by changes in the alkenone-producing coccolithophorid species (inferred from the Gephyrocapsa oceanica / Emiliania huxleyi ratio) suggest that SST changes are driven by changes in the monsoon strength. Our high-(decadal)-resolution data indicate that the late Holocene in the northeastern Arabian Sea was not characterized by a stable uniform climate, as inferred from the Greenland ice cores, but by variations in the dominance of the SW monsoon conditions with significant effects on temperatures. Highest SST fluctuations of up to 3.0°C and 2.5°C were observed for the time interval from 4600 to 3300 years B.P. and during the past 500 years. The significant, short-term SST changes during the past 500 years might be related to climatic instabilities known from the northern latitudes ("Little Ice Age") and confirm global effects. Surface salinity values, reconstructed from delta18O records after correction for temperature-related oxygen isotope fractionation, suggest that in general, the past 5000 years were characterized by higher-than-recent evaporation and more intense SW monsoon conditions. However, between 4600 and 3700 years B.P., evaporation dropped, SW monsoon weakened, and NE monsoon conditions were comparatively enhanced. For the past 1500 years we infer strongly fluctuating monsoon conditions. Comparisons of reconstructed salinity records with ice accumulation data from published Tibetan ice core and Tibetan tree ring width data reveal that during the past 2000 years, enhanced evaporation in the northeastern Arabian Sea correlates with periods of increased ice accumulation in Tibet, and vice versa. This suggests a strong climatic relationship between both monsoon-controlled areas.