961 resultados para GEOPOTENTIAL HEIGHT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wavenumber-frequency spectral analysis of different atmospheric variables has been carried Out using 25 years of data. The area considered is the tropical belt 25 degrees S-25 degrees N. A combined FFT wavelet analysis method has been used for this purpose. Variables considered are outgoing long wave radiation (OLR), 850 hPa divergence, zonal and meridional winds at 850, 500 and 200 hPa levels, sea level pressure and 850 hPa geopotential height. It is shown that the spectra of different variables have some common properties, but each variable also has few features diffe:rent from the rest. While Kelvin mode is prominent in OLR, and zonal winds, it is not clearly observed in pressure and geopotential height fields; the latter two have a dominant wavenumber zero mode not seen in other variables except in meridional wind at 200 hPa and 850 hPa divergences. Different dominant modes in the tropics show significant variations on sub-seasonal time scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several statistical downscaling models have been developed in the past couple of decades to assess the hydrologic impacts of climate change by projecting the station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs). This paper presents and compares different statistical downscaling models that use multiple linear regression (MLR), positive coefficient regression (PCR), stepwise regression (SR), and support vector machine (SVM) techniques for estimating monthly rainfall amounts in the state of Florida. Mean sea level pressure, air temperature, geopotential height, specific humidity, U wind, and V wind are used as the explanatory variables/predictors in the downscaling models. Data for these variables are obtained from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis dataset and the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model, version 3 (CGCM3) GCM simulations. The principal component analysis (PCA) and fuzzy c-means clustering method (FCM) are used as part of downscaling model to reduce the dimensionality of the dataset and identify the clusters in the data, respectively. Evaluation of the performances of the models using different error and statistical measures indicates that the SVM-based model performed better than all the other models in reproducing most monthly rainfall statistics at 18 sites. Output from the third-generation CGCM3 GCM for the A1B scenario was used for future projections. For the projection period 2001-10, MLR was used to relate variables at the GCM and NCEP grid scales. Use of MLR in linking the predictor variables at the GCM and NCEP grid scales yielded better reproduction of monthly rainfall statistics at most of the stations (12 out of 18) compared to those by spatial interpolation technique used in earlier studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação apresenta resultados da aplicação de filtros adaptativos, utilizando os algoritmos NLMS (Normalized Least Mean Square) e RLS (Recursive Least Square), para a redução de desvios em previsões climáticas. As discrepâncias existentes entre o estado real da atmosfera e o previsto por um modelo numérico tendem a aumentar ao longo do período de integração. O modelo atmosférico Eta é utilizado operacionalmente para previsão numérica no CPTEC/INPE e como outros modelos atmosféricos, apresenta imprecisão nas previsões climáticas. Existem pesquisas que visam introduzir melhorias no modelo atmosférico Eta e outras que avaliam as previsões e identificam os erros do modelo para que seus produtos sejam utilizados de forma adequada. Dessa forma, neste trabalho pretende-se filtrar os dados provenientes do modelo Eta e ajustá-los, de modo a minimizar os erros entre os resultados fornecidos pelo modelo Eta e as reanálises do NCEP. Assim, empregamos técnicas de processamento digital de sinais e imagens com o intuito de reduzir os erros das previsões climáticas do modelo Eta. Os filtros adaptativos nesta dissertação ajustarão as séries ao longo do tempo de previsão. Para treinar os filtros foram utilizadas técnicas de agrupamento de regiões, como por exemplo o algoritmo de clusterização k-means, de modo a selecionar séries climáticas que apresentem comportamentos semelhantes entre si. As variáveis climáticas estudadas são o vento meridional e a altura geopotencial na região coberta pelo modelo de previsão atmosférica Eta com resolução de 40 km, a um nível de pressão de 250 hPa. Por fim, os resultados obtidos mostram que o filtro com 4 coeficientes, adaptado pelo algoritmo RLS em conjunto com o critério de seleção de regiões por meio do algoritmo k-means apresenta o melhor desempenho ao reduzir o erro médio e a dispersão do erro, tanto para a variável vento meridional quanto para a variável altura geopotencial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the changes of the North Atlantic subtropical high (NASH) and its impact on summer precipitation over the southeastern (SE) United States using the 850-hPa geopotential height field in the National Centers forEnvironmental Prediction (NCEP) reanalysis, the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), long-term rainfall data, and Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) model simulations during the past six decades (1948-2007). The results show that the NASH in the last 30 yr has become more intense, and its western ridge has displaced westward with an enhanced meridional movement compared to the previous 30 yr. When the NASH moved closer to the continental United States in the three most recent decades, the effect of the NASH on the interannual variation of SE U.S. precipitation is enhanced through the ridge's north-south movement. The study's attribution analysis suggested that the changes of the NASH are mainly due to anthropogenic warming. In the twenty-first century with an increase of the atmospheric CO2 concentration, the center of the NASH would be intensified and the western ridge of the NASH would shift farther westward. These changes would increase the likelihood of both strong anomalously wet and dry summers over the SEUnited States in the future, as suggested by the IPCC AR4 models. © 2011 American Meteorological Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the method of Lorenz (1982), we have estimated the predictability of a recent version of the European Center for Medium-Range Weather Forecasting (ECMWF) model using two different estimates of the initial error corresponding to 6- and 24-hr forecast errors, respectively. For a 6-hr forecast error of the extratropical 500-hPa geopotential height field, a potential increase in forecast skill by more than 3 d is suggested, indicating a further increase in predictability by another 1.5 d compared to the use of a 24-hr forecast error. This is due to a smaller initial error and to an initial error reduction resulting in a smaller averaged growth rate for the whole 7-d forecast. A similar assessment for the tropics using the wind vector fields at 850 and 250 hPa suggests a huge potential improvement with a 7-d forecast providing the same skill as a 1-d forecast now. A contributing factor to the increase in the estimate of predictability is the apparent slow increase of error during the early part of the forecast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of selected observing systems on forecast skill is explored using the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40) system. Analyses have been produced for a surface-based observing system typical of the period prior to 1945/1950, a terrestrial-based observing system typical of the period 1950-1979 and a satellite-based observing system consisting of surface pressure and satellite observations. Global prediction experiments have been undertaken using these analyses as initial states, and which are available every 6 h, for the boreal winters of 1990/1991 and 2000/2001 and the summer of 2000, using a more recent version of the ECMWF model. The results show that for 500-hPa geopotential height, as a representative field, the terrestrial system in the Northern Hemisphere extratropics is only slightly inferior to the control system, which makes use of all observations for the analysis, and is also more accurate than the satellite system. There are indications that the skill of the terrestrial system worsens slightly and the satellite system improves somewhat between 1990/1991 and 2000/2001. The forecast skill in the Southern Hemisphere is dominated by the satellite information and this dominance is larger in the latter period. The overall skill is only slightly worse than that of the Northern Hemisphere. In the tropics (20 degrees S-20 degrees N), using the wind at 850 and 250 hPa as representative fields, the information content in the terrestrial and satellite systems is almost equal and complementary. The surface-based system has very limited skill restricted to the lower troposphere of the Northern Hemisphere. Predictability calculations show a potential for a further increase in predictive skill of 1-2 d in the extratropics of both hemispheres, but a potential for a major improvement of many days in the tropics. As well as the Eulerian perspective of predictability, the storm tracks have been calculated from all experiments and validated for the extratropics to provide a Lagrangian perspective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel statistic for local wave amplitude of the 500-hPa geopotential height field is introduced. The statistic uses a Hilbert transform to define a longitudinal wave envelope and dynamical latitude weighting to define the latitudes of interest. Here it is used to detect the existence, or otherwise, of multimodality in its distribution function. The empirical distribution function for the 1960-2000 period is close to a Weibull distribution with shape parameters between 2 and 3. There is substantial interdecadal variability but no apparent local multimodality or bimodality. The zonally averaged wave amplitude, akin to the more usual wave amplitude index, is close to being normally distributed. This is consistent with the central limit theorem, which applies to the construction of the wave amplitude index. For the period 1960-70 it is found that there is apparent bimodality in this index. However, the different amplitudes are realized at different longitudes, so there is no bimodality at any single longitude. As a corollary, it is found that many commonly used statistics to detect multimodality in atmospheric fields potentially satisfy the assumptions underlying the central limit theorem and therefore can only show approximately normal distributions. The author concludes that these techniques may therefore be suboptimal to detect any multimodality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antarctic stratospheric ozone depletion has been associated with an observed downward trend in tropospheric geopotential height and temperature. Stratospheric ozone depletion peaks in October–November, whereas tropospheric trends are largest in December–January, concurrent with maximum ozone changes close to the tropopause. Surface temperatures are most sensitive to ozone loss near the tropopause, therefore it has been suggested that the observed tropospheric response is forced mainly by ozone depletion in the lower stratosphere. In this study the climate response to ozone depletion exclusively below 164 hPa is simulated using HadSM3-L64, and compared with simulations in which ozone depletion is prescribed exclusively above 164 hPa. Results indicate that the tropospheric response is dominated by ozone changes above 164 hPa, with ozone changes in the lowermost stratosphere playing an insignificant role. A tropospheric response is also seen in fall/winter which agrees well with observations and has not been found in modeling studies previously.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under anthropogenic climate change it is possible that the increased radiative forcing and associated changes in mean climate may affect the “dynamical equilibrium” of the climate system; leading to a change in the relative dominance of different modes of natural variability, the characteristics of their patterns or their behavior in the time domain. Here we use multi-century integrations of version three of the Hadley Centre atmosphere model coupled to a mixed layer ocean to examine potential changes in atmosphere-surface ocean modes of variability. After first evaluating the simulated modes of Northern Hemisphere winter surface temperature and geopotential height against observations, we examine their behavior under an idealized equilibrium doubling of atmospheric CO2. We find no significant changes in the order of dominance, the spatial patterns or the associated time series of the modes. Having established that the dynamic equilibrium is preserved in the model on doubling of CO2, we go on to examine the temperature pattern of mean climate change in terms of the modes of variability; the motivation being that the pattern of change might be explicable in terms of changes in the amount of time the system resides in a particular mode. In addition, if the two are closely related, we might be able to assess the relative credibility of different spatial patterns of climate change from different models (or model versions) by assessing their representation of variability. Significant shifts do appear to occur in the mean position of residence when examining a truncated set of the leading order modes. However, on examining the complete spectrum of modes, it is found that the mean climate change pattern is close to orthogonal to all of the modes and the large shifts are a manifestation of this orthogonality. The results suggest that care should be exercised in using a truncated set of variability EOFs to evaluate climate change signals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using an idealized primitive equation model, we investigate how stratospheric conditions alter the development of baroclinic instability in the troposphere. Starting from the lifecycle paradigm of Thorncroft et al., we consider the evolution of baroclinic lifecycles resulting from the addition of a stratospheric jet to the LC1 initial condition. We find that the addition of the stratospheric jet yields a net surface geopotential height anomaly that strongly resembles the Arctic Oscillation. With the additional modification of the tropospheric winds to resemble the high-AO climatology, the surface response is amplified by a factor 10 and, though dominated by the tropospheric changes, shows similar sensitivity to the stratospheric conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports recent changes in the mass balance record from the Djankuat Glacier, central greater Caucasus, Russia, and investigates possible relationships between the components of mass balance, local climate, and distant atmospheric forcing. The results clearly show that a strong warming signal has emerged in the central greater Caucasus, particularly since the 1993/1994 mass balance year, and this has led to a significant increase in the summer ablation of Djankuat. At the same time, there has been no compensating consistent increase in winter precipitation and accumulation leading to the strong net loss of mass and increase in glacier runoff. Interannual variability in ablation and accumulation is partly associated with certain major patterns of Northern Hemisphere climatic variability. The positive phase of the North Pacific (NP) teleconnection pattern forces negative geopotential height and temperature anomalies over the Caucasus in summer and results in reduced summer melt, such as in the early 1990s, when positive NP extremes resulted in a temporary decline in ablation rates. The positive phase of the NP is related to El Nino-Southern Oscillation, and it is possible that a teleconnection between the tropical Pacific sea surface temperatures and summer air temperatures in the Caucasus is bridged through the NP pattern. More recently, the NP pattern was predominantly negative, and this distant moderating forcing on summer ablation in the Caucasus was absent. Statistically significant correlations are observed between accumulation and the Scandinavian (SCA) teleconnection pattern. The frequent occurrence of the positive SCA phase at the beginning of accumulation season results in lower than average snowfall and reduced accumulation. The relationship between the North Atlantic Oscillation (NAO), Arctic Oscillation, and accumulation is weak, although positive precipitation anomalies in the winter months are associated with the negative phase of the NAO. A stronger positive correlation is observed between accumulation on Djankuat and geopotential height over the Bay of Biscay unrelated to the established modes of the Northern Hemisphere climatic variability. These results imply that the mass balance of Djankuat is sensitive to the natural variability in the climate system. Distant forcing, however, explains only 16% of the variance in the ablation record and cannot fully explain the recent increase in ablation and negative mass balance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of boreal winter forecasts made with the European Centre for Medium-Range Weather Forecasts (ECMWF) System 11 Seasonal Forecasting System is investigated through analyses of ensemble hindcasts for the period 1987-2001. The predictability, or signal-to-noise ratio, associated with the forecasts, and the forecast skill are examined. On average, forecasts of 500 hPa geopotential height (GPH) have skill in most of the Tropics and in a few regions of the extratropics. There is broad, but not perfect, agreement between regions of high predictability and regions of high skill. However, model errors are also identified, in particular regions where the forecast ensemble spread appears too small. For individual winters the information provided by t-values, a simple measure of the forecast signal-to-noise ratio, is investigated. For 2 m surface air temperature (T2m), highest t-values are found in the Tropics but there is considerable interannual variability, and in the tropical Atlantic and Indian basins this variability is not directly tied to the El Nino Southern Oscillation. For GPH there is also large interannual variability in t-values, but these variations cannot easily be predicted from the strength of the tropical sea-surface-temperature anomalies. It is argued that the t-values for 500 hPa GPH can give valuable insight into the oceanic forcing of the atmosphere that generates predictable signals in the model. Consequently, t-values may be a useful tool for understanding, at a mechanistic level, forecast successes and failures. Lastly, the extent to which t-values are useful as a predictor of forecast skill is investigated. For T2m, t-values provide a useful predictor of forecast skill in both the Tropics and extratropics. Except in the equatorial east Pacific, most of the information in t-values is associated with interannual variability of the ensemble-mean forecast rather than interannual variability of the ensemble spread. For GPH, however, t-values provide a useful predictor of forecast skill only in the tropical Pacific region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use proper orthogonal decomposition (POD) to study a transient teleconnection event at the onset of the 2001 planet-encircling dust storm on Mars, in terms of empirical orthogonal functions (EOFs). There are several differences between this and previous studies of atmospheric events using EOFs. First, instead of using a single variable such as surface pressure or geopotential height on a given pressure surface, we use a dataset describing the evolution in time of global and fully three-dimensional atmospheric fields such as horizontal velocity and temperature. These fields are produced by assimilating Thermal Emission Spectrometer observations from NASA's Mars Global Surveyor spacecraft into a Mars general circulation model. We use total atmospheric energy (TE) as a physically meaningful quantity which weights the state variables. Second, instead of adopting the EOFs to define teleconnection patterns as planetary-scale correlations that explain a large portion of long time-scale variability, we use EOFs to understand transient processes due to localised heating perturbations that have implications for the atmospheric circulation over distant regions. The localised perturbation is given by anomalous heating due to the enhanced presence of dust around the northern edge of the Hellas Planitia basin on Mars. We show that the localised disturbance is seemingly restricted to a small number (a few tens) of EOFs. These can be classified as low-order, transitional, or high-order EOFs according to the TE amount they explain throughout the event. Despite the global character of the EOFs, they show the capability of accounting for the localised effects of the perturbation via the presence of specific centres of action. We finally discuss possible applications for the study of terrestrial phenomena with similar characteristics.