924 resultados para GEO 4 : global environment outlook, environment for development
Resumo:
Kirjallisuusarvostelu
Resumo:
Principle 10 of the Rio Declaration on Environment and Development, 1992
Resumo:
23rd SPACE AGM and Conference from 9 to 12 May 2012 Conference theme: The Role of Professional Higher Education: Responsibility and Reflection Venue: Mikkeli University of Applied Sciences, Mikkeli, Finland
Resumo:
Investing in global environmental and adaptation benefits in the context of agriculture and food security initiatives can play an important role in promoting sustainable intensification. This is a priority for the Global Environment Facility (GEF), created in 1992 with a mandate to serve as financial mechanism of several multilateral environmental agreements. To demonstrate the nature and extent of GEF financing, we conducted an assessment of the entire portfolio over a period of two decades (1991–2011) to identify projects with direct links to agriculture and food security. A cohort of 192 projects and programs were identified and used as a basis for analyzing trends in GEF financing. The projects and programs together accounted for a total GEF financing of US$1,086.8 million, and attracted an additional US$6,343.5 million from other sources. The value-added of GEF financing for ecosystem services and resilience in production systems was demonstrated through a diversity of interventions in the projects and programs that utilized US$810.6 million of the total financing. The interventions fall into the following four main categories in accordance with priorities of the GEF: sustainable land management (US$179.3 million), management of agrobiodiversity (US$113.4 million), sustainable fisheries and water resource management (US$379.8 million), and climate change adaptation (US$138.1 million). By aligning GEF priorities with global aspirations for sustainable intensification of production systems, the study shows that it is possible to help developing countries tackle food insecurity while generating global environmental benefits for a healthy and resilient planet.
Resumo:
Esta guía de estudio está diseñada para mejorar la comprensión de la geografía física. Complementa las unidades del libro de texto y las experiencias de aprendizaje. Cada unidad sigue un formato idéntico: resumen de la unidad; objetivos de la unidad; glosario de términos clave; esquema de la unidad; preguntas de examen; auto-test que se puede utilizar para preparar los exámenes de respuestas cortas. Para cada unidad hay seis preguntas de selección múltiple y verdadero o falso.
Resumo:
This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations. Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions, which replaces the parameterized eddy heat transport in the lower-resolution model. HiGEM is also able to more realistically simulate small-scale features in the wind stress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology. Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular, the small-scale interaction recently seen in satellite imagery between the atmosphere and tropical instability waves in the tropical Pacific Ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the tropical Pacific, which has important implications for climate variability. In particular, all aspects of the simulation of ENSO (spatial patterns, the time scales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.
Resumo:
Climate change, a quintessential environmental problem, is generally recognised as the most important development challenge in the 21st century (IPCC, 2014). In addition to acknowledging its many significant direct consequences, climate change is increasingly used to frame discussions on other important global challenges, such as health, energy and food security. This chapter provides understanding of the intricate and complex relationship between climate change, environment and development.
Resumo:
We live and work in a world that is even more interconnected and interdependent than ever before. Engineers must now not only develop technical engineering competence, but must also develop additional skills and competencies including global competence to obtain success within a global engineering environment. The purpose of this study was to determine whether multinational companies considered global competence an important skill in mechanical engineering graduates when making hiring decisions. The study was an exploratory study that utilized an extensive literature review to identify eight global competencies for engineering success within a global environment and also included a survey instrument completed by Brigham Young University (BYU) mechanical engineering alumni in 48 states and 17 countries. The study focused on an evaluation of standard hiring technical engineering competencies with eight global competencies identified in the literature review. The study established that standard engineering technical competencies were the most important consideration when hiring mechanical engineers, but global competence was also considered important by a majority of all survey respondents with six of the eight global competencies rated important by 79 to 91% of respondents with an ability to communicate cross-culturally the highest-rated global competence. The importance of global competence in engineers when making hiring decisions, as considered by large companies who employed more than 10,000 employees or who had annual revenue exceeding $1 billion (US$) per year, was particularly strong. The majority of respondents (70%) indicated that companies were willing to provide training and experience to help engineers obtain success in a global engineering environment. In addition, a majority of respondents (59.9%) indicated that companies valued the efforts of higher educational engineering institutions to prepare engineers for success in a global environment with only 4.8% of respondents indicating that they did not value the efforts of higher education engineering institutions. However, only 27% of respondents agreed that colleges and universities were successful in this endeavor. Globalization is not a passing phenomenon, it is here to stay. Colleges and universities throughout the world need to recognize the importance of globalization and the interdependence and interconnectedness among the world’s population. Therefore, it is important to identify, develop, and provide opportunities for international collaboration and interaction among students and faculty throughout the world and to focus on developing global competence as an important outcome for engineering graduates.
Resumo:
The effect of environment on development and survival of pupae of the necrophagous fly Ophyra albuquerquei Lopes (Diptera, Muscidae). Species of Ophyra Robineau-Desvoidy, 1830 are found in decomposing bodies, usually in fresh, bloated and decay stages. Ophyra albuquerquei Lopes, for example, can be found in animal carcasses. The influence of environmental factors has not been evaluated in puparia of O. albuquerquei. Thus, the focus of this work was motivated by the need for models to predict the development of a necrophagous insect as a function of abiotic factors. Colonies of O. albuquerquei were maintained in the laboratory to obtain pupae. On the tenth day of each month 200 pupae, divided equally into 10 glass jars, were exposed to the environment and checked daily for adult emergence of each sample. We concluded that the high survival rate observed suggested that the diets used for rearing the larvae and maintaining the adults were appropriate. Also, the data adjusted to robust generalized linear models and there were no interruptions of O. albuquerquei pupae development within the limits of temperatures studied in southern Rio Grande do Sul, given the high survival presented.
Resumo:
The aim of this research was to develop a framework to analyze how physical environment influences scientific creativity. Due to the relative novelty of this topic, there is still a gap in the unified method to study connection between physical environment and creativity. Therefore, in order to study this issue deeply, the qualitative method was used (interviews and qualitative questionnaire). Scientists (PhD students and senior researchers) of Graduate School of Management were interviewed to build the model and one expert interview was conducted to assess its validity. The model highlights several dimensions via which physical environment can influence scientific creativity: Comfort, Instruments and Diversity. Comfort and Instruments are considered to be related mostly to productivity, an initial requirement for creativity, while Diversity is the factor responsible for supporting all the stages of scientific creative process. Thus, creative physical environment is not one place by its nature, but an aggregative phenomenon. Due to two levels of analysis, the model is named the two-level model of creative physical environment.
Resumo:
Esta publicación proporciona una base para la comprensión de los sistemas ambientales de la Tierra y sus procesos, desde el lugar que ocupa nuestro planeta en el sistema solar, a los paisajes regionales resultantes de la erosión y las fuerzas tectónicas. El texto ofrece cincuenta y dos unidades agrupadas en cinco contenidos:una perspectiva global; atmósfera e hidrosfera; biosfera; la corteza inquieta; lo que esculpió la superficie. Al final de cada unidad hay una relación de términos clave, preguntas de repaso, referencias bibliográficas y recursos web que proporcionan a los estudiantes una manera interactiva de conocer más de cerca los conceptos expuestos en texto. Tiene además un apéndice con mapa político del mundo, un apéndice con las unidades y sus conversiones, guía de pronunciación figurada, glosario e índice.