997 resultados para GENETIC IDENTITY
Resumo:
Coastal primary rainforests have suffered damage in Côte d'Ivoire as a result of a lack of protection and urban pressures. Consequently, the highly endemic and critically endangered Wimmer's shrew, Crocidura wimmeri, known only from its type locality, Adiopodoumé, near Abidjan, was considered to have been extinct since 1976. Shrew species assignment is often problematic because of strong phenotypic similarities among many species. The phylogenetic position of C. wimmeri within the African Crocidura species should thus be clarified. In light of its recent rediscovery in the nearby small Banco National Park (34 km2), we investigated the genetic identity of seven specimens of C. wimmeri, based on 1020 bp of the mitochondrial DNA cytochrome b gene compared to other species sampled in the same region and published sequences from GenBank. Crocidura wimmeri formed a well-defined clade, the closest-related species being Crocidura sp., with a distance of 9.3%, a yet unknown species from Taï and Ziama forests. These results thus confirmed the validity of this species. This genetic characterization not only contributes to our knowledge of the evolution of West African shrews, but also may help in the discovery of additional populations of this critically endangered species.
Resumo:
Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
A method for cell–cell and cell–liposome fusion at the single-cell level is described. Individual cells or liposomes were first selected and manipulated either by optical trapping or by adhesion to a micromanipulator-controlled ultramicroelectrode. Spatially selective fusion of the cell–cell or cell–liposome pair was achieved by the application of a highly focused electric field through a pair of 5-μm o.d. carbon-fiber ultramicroelectrodes. The ability to fuse together single cells opens new possibilities in the manipulation of the genetic and cellular makeup of individual cells in a controlled manner. In the study of cellular networks, for example, the alteration of the biochemical identity of a selected cell can have a profound effect on the behavior of the entire network. Fusion of a single liposome with a target cell allows the introduction of the liposomal content into the cell interior as well as the addition of lipids and membrane proteins onto the cell surface. This cell–liposome fusion represents an approach to the manipulation of the cytoplasmic contents and surface properties of single cells. As an example, we have introduced a membrane protein (γ-glutamyltransferase) reconstituted in liposomes into the cell plasma membrane.
Resumo:
Allele frequencies at seven polymorphic loci controlling the synthesis of enzymes were analyzed in six populations of Culex pipiens L. and Cx. quinquefasciatus Say. Sampling sites were situated along a north-south line of about 2,000 km in Argentina. The predominant alleles at Mdh, Idh, Gpdh and Gpi loci presented similar frequencies in all the samples. Frequencies at the Pgm locus were similar for populations pairs sharing the same geographic area. The loci Cat and Hk-1 presented significant geographic variation. The latter showed a marked latitudinal cline, with a frequency for allele b ranging from 0.99 in the northernmost point to 0.04 in the southernmost one, a pattern that may be explained by natural selection (FST = 0.46; p < 0.0001) on heat sensitive alleles. The average value of FST (0.088) and Nm (61.12) indicated a high gene flow between adjacent populations. A high correlation was found between genetic and geographic distance (r = 0.83; p < 0.001). The highest genetic identity (IN = 0.988) corresponded to the geographically closest samples from the central area. In one of these localities Cx. quinquefasciatus was predominant and hybrid individuals were detected, while in the other, almost all the specimens were identified as Cx. pipiens. To verify the fertility between Cx. pipiens and Cx. quinquefasciatus from the northern- and southernmost populations, experimental crosses were performed. Viable egg rafts were obtained from both reciprocal crosses. Hatching ranged from 76.5 to 100%. The hybrid progenies were fertile through two subsequent generations
Resumo:
An eletrophoretic analysis of three species of the subgenus Dendromyia (Wyeomyia luteoventralis, Wy. ypsipola and Wy. testei) and three species belonging to different groups in the genus Wyeomyia (Wy. negrensis, Wy. mystes and Wy.confusa) was performed. Eight enzyme loci were analyzed. High values of genetic identity were detected among the species of the subgenus Dendromyia: Wy. luteoventralis, Wy. ypsipola and Wy. testei (mean value 0.63). On the other hand low values of genetic identity were observed among Wy. negrensis, Wy. mystes and Wy. confusa (mean value 0.23), suggesting that they belong, at least, to distinct subgenera within the Genus Wyeomyia. The UPGMA phenogram revealed the grouping of the Dendromyia species, while the others clustered at lower identity levels.
Resumo:
Distinguishing subpopulations in group behavioral experiments can reveal the impact of differences in genetic, pharmacological and life-histories on social interactions and decision-making. Here we describe Fluorescence Behavioral Imaging (FBI), a toolkit that uses transgenic fluorescence to discriminate subpopulations, imaging hardware that simultaneously records behavior and fluorescence expression, and open-source software for automated, high-accuracy determination of genetic identity. Using FBI, we measure courtship partner choice in genetically mixed groups of Drosophila.
Resumo:
Conservation and improvement strategies should be based on the association between genetic and phenotypic characteristics. The objective of this work was to characterize five native Brazilian cattle breeds (Caracu, Crioulo Lageano, Curraleiro, National Polled and Pantaneiro) and two commercial breeds (Holstein and Nellore) using RAPD technique to estimate genetic distances and variability between and within breeds. Genetic relationships were investigated using 22 primers which generated 122 polymorphic bands. Analysis of molecular variance indicated that most of the genetic variation lay among individuals within populations. The genetic variabilities between pairs of breeds were statistically significant. The smallest genetic divergence was between Crioulo Lageano and Curraleiro.The National Polled, although historically considered to be of Bos taurus aquitanicus origin,similar to theCaracu, was grouped together with the other breeds of Bos taurus ibericus origin. Generally, the individual breeds formed distinct clusters except the National Polled. The RAPD technique was capable to distinguish genetically between the breeds studied; the Caracu, Crioulo Lageano, Curraleiro and Pantaneiro may be considered distinct genetic entities thereby proving the uniqueness of the populations; the National Polled has not been able to re-establish itself after its decline in the 1950s, thereby losing its genetic identity.
Resumo:
The genetic variability of the "curimba", Prochilodus lineatus, from three locations in the Paraná river basin, was investigated by starch gel electrophoresis. A total of 160 specimens were analyzed for 19 enzymes, 12 of which permitted successful interpretation of electrophoretic patterns. Eighteen loci were identified and six of them proved to be polymorphic (EST-1*, EST-2*, IDH-1*, PGM-1*, PGM-2*, LDH-2*). Mean heterozygosity was considered high (13%) by comparison with the literature. A low level of differentiation was found among subpopulations, with mean F ST = 0.018. Values of genetic distance and genetic identity suggest that, at least along this stretch of the river, P. lineatus comprises a single breed with high gene flow. This analysis has important implications for fishery management, aquaculture, and conservation of the stocks
Resumo:
A PCR-RFLP analysis of the restriction pattern in nuclear (RAG2) and mitochondrial (12S/16S) gene sequences of bat species from the Molossidae, Phyllostomidae, Vespertilionidae, and Emballonuridae families produced a large number of fragments: 107 for RAG2 and 155 for 12S/16S combined in 139 and 402 haplotypes, respectively. The values detected for gene variation were low for both sequences (0.13 for RAG2 and 0.15 for 12S/16S) and reflected their conservative feature, reinforced by high values of inter- and intraspecies genetic identity (70-100%). The species with a high gene divergence were variable in the analyses of RAG2 (Eumops perotis, Artibeus lituratus, and Carollia perspicillata) and of 12S/16S (Nyctinomops laticaudatus, C. perspicillata, and Cynomops abrasus), and furthermore, one of them, C. perspicillata, also showed the highest intraspecific variation. The species that exhibited the lowest variation for both genes was Molossus rufus. In the families, the highest variation was observed in the Molossidae and this can be attributed to variation exhibited by Eumops and Nyctinomops species. The variations observed were interpreted as a natural variability within the species and genus that exhibited a conserved pattern in the two gene sequences in different species and family analyzed. Our data reinforce the idea that the analyses of mitochondrial and nuclear genes contribute to our knowledge of the diversity of New World bats. The genetic variability found in different taxa suggests that an additional diversity, unnoticed by other methods, can be revealed with the use of different molecular strategies. ©FUNPEC-RP.
Resumo:
Dispersal and recruitment are central processes that shape the geographic and temporal distributions of populations of marine organisms. However, significant variability in factors such as reproductive output, larval transport, survival, and settlement success can alter the genetic identity of recruits from year to year. We designed a temporal and spatial sampling protocol to test for genetic heterogeneity among adults and recruits from multiple time points along a similar to 400 km stretch of the Oregon (USA) coastline. In total, 2824 adult and recruiting Balanus glandula were sampled between 2001 and 2008 from 9 sites spanning the Oregon coast. Consistent with previous studies, we observed high mitochondrial DNA diversity at the cytochrome oxidase I locus (884 unique haplotypes) and little to no spatial genetic population structure among the 9 sites (Phi(ST) = 0.00026, p = 0.170). However, subtle but significant temporal shifts in genetic composition were observed among year classes (Phi(ST) = 0.00071, p = 0.035), and spatial Phi(ST) varied from year to year. These temporal shifts in genetic structure were correlated with yearly differences in the strength of coastal upwelling (p = 0.002), with greater population structure observed in years with weaker upwelling. Higher levels of barnacle settlement were also observed in years with weaker upwelling (p < 0.001). These data suggest the hypothesis that low upwelling intensity maintains more local larvae close to shore, thereby shaping the genetic structure and settlement rate of recruitment year classes.
Resumo:
Reducing duplication in ex-situ collections is complicated and requires good quality genetic markers. This study was conducted to assess the value of endosperm proteins and SSRs for validation of potential duplicates and monitoring intra-accession variability. Fifty durum wheat (Triticum turgidum ssp. durum) accessions grouped in 23 potential duplicates, and previously characterised for 30 agro-morphological traits, were analysed for gliadin and high molecular weight glutenin (HMWG) subunit alleles, total protein, and 24 SSRs, covering a wide genome area. Similarity and dissimilarity matrices were generated based on protein and SSRs alleles. For heterogeneous accessions at gliadins the percent pattern homology (PH) between gliadin patterns and the Nei’s coefficient of genetic identity (I) were computed. Eighteen duplicates identical for proteins showed none or less than 3 unshared SSRs alleles. For heterogeneous accessions PH and I values lower than 80 identified clearly off-types with more than 3 SSRs unshared. Only those biotypes differing in no more than one protein-coding locus were confirmed with SSRs. A good concordance among proteins, morphological traits, and SSR were detected. However, the discrepancy in similarity detected in some cases showed that it is advisable to evaluate redundancy through distinct approaches. The analysis in proteins together with SSRs data are very useful to identify duplicates, biotypes, close related genotypes, and contaminations
Resumo:
Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.
Resumo:
The study of continuously varying, quantitative traits is important in evolutionary biology, agriculture, and medicine. Variation in such traits is attributable to many, possibly interacting, genes whose expression may be sensitive to the environment, which makes their dissection into underlying causative factors difficult. An important population parameter for quantitative traits is heritability, the proportion of total variance that is due to genetic factors. Response to artificial and natural selection and the degree of resemblance between relatives are all a function of this parameter. Following the classic paper by R. A. Fisher in 1918, the estimation of additive and dominance genetic variance and heritability in populations is based upon the expected proportion of genes shared between different types of relatives, and explicit, often controversial and untestable models of genetic and non-genetic causes of family resemblance. With genome-wide coverage of genetic markers it is now possible to estimate such parameters solely within families using the actual degree of identity-by-descent sharing between relatives. Using genome scans on 4,401 quasi-independent sib pairs of which 3,375 pairs had phenotypes, we estimated the heritability of height from empirical genome-wide identity-by-descent sharing, which varied from 0.374 to 0.617 (mean 0.498, standard deviation 0.036). The variance in identity-by-descent sharing per chromosome and per genome was consistent with theory. The maximum likelihood estimate of the heritability for height was 0.80 with no evidence for non-genetic causes of sib resemblance, consistent with results from independent twin and family studies but using an entirely separate source of information. Our application shows that it is feasible to estimate genetic variance solely from within- family segregation and provides an independent validation of previously untestable assumptions. Given sufficient data, our new paradigm will allow the estimation of genetic variation for disease susceptibility and quantitative traits that is free from confounding with non-genetic factors and will allow partitioning of genetic variation into additive and non-additive components.
Resumo:
Cross-amplification was tested and variability in microsatellite primers (designed for Neotropical parrots) compared, in five macaw species, viz., three endangered blue macaws (Cyanopsitta spixii [extinct in the wild], Anodorhynchus leari [endangered] and Anodorhynchus hyacinthinus [vulnerable]), and two unthreatened red macaws (Ara chloropterus and Ara macao). Among the primers tested, 84.6% successfully amplified products in C. spixii, 83.3% in A. leari, 76.4% in A. hyacinthinus, 78.6% in A. chloropterus and 71.4% in A. macao. The mean expected heterozygosity estimated for each species, and based on loci analyzed in all the five, ranged from 0.33 (A. hyacinthinus) to 0.85 (A. macao). As expected, the results revealed lower levels of genetic variability in threatened macaw species than in unthreatened. The low combined probability of genetic identity and the moderate to high potential for paternity exclusion, indicate the utility of the microsatellite loci set selected for each macaw species in kinship and population studies, thus constituting an aid in planning in-situ and ex-situ conservation.
Resumo:
INTRODUCTION: Evidence suggests that giardiasis is a zoonotic disease. The present work aimed to evaluate the genetic identity of Giardia duodenalis isolated from human and dog fecal samples from Belo Horizonte. METHODS: Human and dog fecal samples were cultured for isolation of G. duodenalis. To determine the genotype of the isolates, primers that amplify a specific region in rRNA of the protozoan were used. RESULTS: Two G. duodenalis isolates were obtained, which belong to the subgroup A genotype. CONCLUSIONS: These findings suggest that the transmission of giardiasis follows a zoonotic pattern.