30 resultados para GCMC
Resumo:
The applicability of BET model for calculation of surface area of activated carbons is checked by using molecular simulations. By calculation of geometric surface areas for the simple model carbon slit-like pore with the increasing width, and by comparison of the obtained values with those for the same systems from the VEGA ZZ package (adsorbate-accessible molecular surface), it is shown that the latter methods provide correct values. For the system where a monolayer inside a pore is created the ASA approach (GCMC, Ar, T = 87 K) underestimates the value of surface area for micropores (especially, where only one layer is observed and/or two layers of adsorbed Ar are formed). Therefore, we propose the modification of this method based on searching the relationship between the pore diameter and the number of layers in a pore. Finally BET; original andmodified ASA; and A, B and C-point surface areas are calculated for a series of virtual porous carbons using simulated Ar adsorption isotherms (GCMC and T = 87 K). The comparison of results shows that the BET method underestimates and not, as it was usually postulated, overestimates the surface areas of microporous carbons.
Resumo:
In this paper, we present a technique for equilibria characterization of activated carbon having slit-shaped pores. This method was first developed by Do (Do, D. D. A new method for the characterisation of micro-mesoporous materials. Presented at the International Symposium on New Trends in Colloid and Interface Science, September 24-26, 1998 Chiba, Japan) and applied by his group and other groups for characterization of pore size distribution (PSD) as well as adsorption equilibria determination of a wide range of hydrocarbons. It is refined in this paper and compared with the grand canonical Monte Carlo (GCMG) simulation and density functional theory (DFT). The refined theory results in a good agreement between the pore filling pressure versus pore width and those obtained by GCMG and DFT. Furthermore, our local isotherms are qualitatively in good agreement with those obtained by the GCMC simulations. The main advantage of this method is that it is about 4 orders of magnitude faster than the GCMC simulations, making it suitable for optimization studies and design purposes. Finally, we apply our method and the GCMG in the derivation of the PSD of a commercial activated carbon. It was found that the PSD derived from our method is comparable to that derived from the GCMG simulations.
Resumo:
A review is given of the pore characterization of carbonaceous materials, including activated carbon, carbon fibres, carbon nanotubes, etc., using adsorption techniques. Since the pores of carbon media are mostly of molecular dimensions, the appropriate modem tools for the analysis of adsorption isotherms are grand canonical Monte Carlo (GCMC) simulations and density functional theory (DFT). These techniques are presented and applications of such tools in the derivation of pore-size distribution highlighted.
Resumo:
In this paper we apply a new method for the determination of surface area of carbonaceous materials, using the local surface excess isotherms obtained from the Grand Canonical Monte Carlo simulation and a concept of area distribution in terms of energy well-depth of solid–fluid interaction. The range of this well-depth considered in our GCMC simulation is from 10 to 100 K, which is wide enough to cover all carbon surfaces that we dealt with (for comparison, the well-depth for perfect graphite surface is about 58 K). Having the set of local surface excess isotherms and the differential area distribution, the overall adsorption isotherm can be obtained in an integral form. Thus, given the experimental data of nitrogen or argon adsorption on a carbon material, the differential area distribution can be obtained from the inversion process, using the regularization method. The total surface area is then obtained as the area of this distribution. We test this approach with a number of data in the literature, and compare our GCMC-surface area with that obtained from the classical BET method. In general, we find that the difference between these two surface areas is about 10%, indicating the need to reliably determine the surface area with a very consistent method. We, therefore, suggest the approach of this paper as an alternative to the BET method because of the long-recognized unrealistic assumptions used in the BET theory. Beside the surface area obtained by this method, it also provides information about the differential area distribution versus the well-depth. This information could be used as a microscopic finger-print of the carbon surface. It is expected that samples prepared from different precursors and different activation conditions will have distinct finger-prints. We illustrate this with Cabot BP120, 280 and 460 samples, and the differential area distributions obtained from the adsorption of argon at 77 K and nitrogen also at 77 K have exactly the same patterns, suggesting the characteristics of this carbon.
Resumo:
In this paper, we investigate the suitability of the grand canonical Monte Carlo in the description of adsorption equilibria of flexible n-alkane (butane, pentane and hexane) on graphitized thermal carbon black. Potential model of n-alkane of Martin and Siepmann (J. Phys. Chem. 102 (1998) 2569) is employed in the simulation, and we consider the flexibility of molecule in the simulation. By this we study two models, one is the fully flexible molecular model in which n-alkane is subject to bending and torsion, while the other is the rigid molecular model in which all carbon atoms reside on the same plane. It is found that (i) the adsorption isotherm results of these two models are close to each other, suggesting that n-alkane model behaves mostly as rigid molecules with respect to adsorption although the isotherm for longer chain n-hexane is better described by the flexible molecular model (ii) the isotherms agree very well with the experimental data at least up to two layers on the surface.
Resumo:
In this paper we investigate the difference between the adsorption of spherical molecule argon (at 87.3 K) and the flexible normal butane (at an equivalent temperature of 150 K) in carbon slit pores. These temperatures are equivalent in the sense that they have the same relative distances between their respective triple points and critical points. Higher equivalent temperatures are also studied (122.67 K for argon and 303 K for n-butane) to investigate the effects of temperature on the 2D-transition in adsorbed density. The Grand Canonical Monte Carlo simulation is used to study the adsorption of these two model adsorbates. Beside the longer computation times involved in the computation of n-butane adsorption, n-butane exhibits many interesting behaviors such as: (i) the onset of adsorption occurs sooner (in terms of relative pressure), (ii) the hysteresis for 2D- and 3D-transitions is larger, (iii) liquid-solid transition is not possible, (iv) 2D-transition occurs for n-butane at 150 K while it does not happen for argon except for pores that accommodate two layers of molecules, (v) the maximum pore density is about four times less than that of argon and (vi) the sieving pore width is slightly larger than that for argon. Finally another feature obtained from the Grand Canonical Monte Carlo (GCMC) simulation is the configurational arrangement of molecules in pores. For spherical argon, the arrangement is rather well structured, while for n-butane the arrangement depends very much on the pore size. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We model nongraphitized carbon black surfaces and investigate adsorption of argon on these surfaces by using the grand canonical Monte Carlo simulation. In this model, the nongraphitized surface is modeled as a stack of graphene layers with some carbon atoms of the top graphene layer being randomly removed. The percentage of the surface carbon atoms being removed and the effective size of the defect ( created by the removal) are the key parameters to characterize the nongraphitized surface. The patterns of adsorption isotherm and isosteric heat are particularly studied, as a function of these surface parameters as well as pressure and temperature. It is shown that the adsorption isotherm shows a steplike behavior on a perfect graphite surface and becomes smoother on nongraphitized surfaces. Regarding the isosteric heat versus loading, we observe for the case of graphitized thermal carbon black the increase of heat in the submonolayer coverage and then a sharp decline in the heat when the second layer is starting to form, beyond which it increases slightly. On the other hand, the isosteric heat versus loading for a highly nongraphitized surface shows a general decline with respect to loading, which is due to the energetic heterogeneity of the surface. It is only when the fluid-fluid interaction is greater than the surface energetic factor that we see a minimum-maximum in the isosteric heat versus loading. These simulation results of isosteric heat agree well with the experimental results of graphitization of Spheron 6 (Polley, M. H.; Schaeffer, W. D.; Smith, W. R. J. Phys. Chem. 1953, 57, 469; Beebe, R. A.; Young, D. M. J. Phys. Chem. 1954, 58, 93). Adsorption isotherms and isosteric heat in pores whose walls have defects are also studied from the simulation, and the pattern of isotherm and isosteric heat could be used to identify the fingerprint of the surface.
Resumo:
Adsorption of n-alkane mixtures in the zeolite LTA-5A under liquid-phase conditions has been studied using grand canonical Monte Carlo (GCMC) simulations combined with parallel tempering. Normal GCMC techniques fail for some of these systems due to the preference of linear molecules to coil within a single cage in the zeolite. The narrow zeolite windows severerly restrict interactions of the molecules, making it difficult to simulate cooperative rearrangements necessary to explore configuration space. Because of these reasons, normal GCMC simulations results show poor reproducibility in some cases. These problems were overcome with parallel tempering techniques. Even with parallel tempering, these are very challenging systems for molecular simulation. Similar problems may arise for other zeolites such as CHA, AFX, ERI, KFI, and RHO having cages connected by narrow windows. The simulations capture the complex selectivity behavior observed in experiments such as selectivity inversion and azeotrope formation.
Resumo:
Development of microporous adsorbents for separation and sequestration of carbon dioxide from flue gas streams is an area of active research. In this study, we assess the influence of specific functional groups on the adsorption selectivity of CO2/N-2 mixtures through Grand Canonical Monte Carlo (GCMC) simulations. Our model system consists of a bilayer graphene nanoribbon that has been edge functionalized with OH, NH2, NO2, CH3 and COOH. Ab initio Moller-Plesset (MP2) calculations with functionalized benzenes are used to obtain binding energies and optimized geometries for CO2 and N-2. This information is used to validate the choice classical forcefields in GCMC simulations. In addition to simulations of adsorption from binary mixtures of CO2 and N-2, the ideal adsorbed solution theory (IAST) is used to predict mixture isotherms. Our study reveals that functionalization always leads to an increase in the adsorption of both CO2 and N-2 with the highest for COOH. However, significant enhancement in the selectivity for CO2 is only seen with COOH functionalized nanoribbons. The COOH functionalization gives a 28% increase in selectivity compared to H terminated nanoribbons, whereas the improvement in the selectivity for other functional groups are much Enure modest. Our study suggests that specific functionalization with COOH groups can provide a material's design strategy to improve CO2 selectivity in microporous adsorbents. Synthesis of graphene nanoplatelets with edge functionalized COOH, which has the potential for large scale production, has recently been reported (Jeon el, al., 2012). (C) 2014 Elsevier Ltd. All rights reserved,
Resumo:
This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.
Resumo:
We present the results of a systematic study of the influence of carbon surface oxidation on Dubinin–Astakhov isotherm parameters obtained from the fitting of CO2 adsorption data. Using GCMC simulations of adsorption on realistic VPC models differing in porosity and containing the most frequently occurring carbon surface functionalities (carboxyls, hydroxyls and carbonyls) and their mixtures, it is concluded that the maximum adsorption calculated from the DA model is not strongly affected by the presence of oxygen groups. Unfortunately, the same cannot be said of the remaining two parameters of this model i.e. the heterogeneity parameter (n) and the characteristic energy of adsorption (E0). Since from the latter the pore diameters of carbons are usually calculated, by inverse-type relationships, it is concluded that they are questionable for carbons containing surface oxides, especially carboxyls.
Resumo:
Nitrogen adsorption on carbon nanotubes is wide- ly studied because nitrogen adsorption isotherm measurement is a standard method applied for porosity characterization. A further reason is that carbon nanotubes are potential adsorbents for separation of nitrogen from oxygen in air. The study presented here describes the results of GCMC simulations of nitrogen (three site model) adsorption on single and multi walled closed nanotubes. The results obtained are described by a new adsorption isotherm model proposed in this study. The model can be treated as the tube analogue of the GAB isotherm taking into account the lateral adsorbate-adsorbate interactions. We show that the model describes the simulated data satisfactorily. Next this new approach is applied for a description of experimental data measured on different commercially available (and characterized using HRTEM) carbon nanotubes. We show that generally a quite good fit is observed and therefore it is suggested that the observed mechanism of adsorption in the studied materials is mainly determined by adsorption on tubes separated at large distances, so the tubes behave almost independently.
Resumo:
This paper presents a detailed analysis of adsorption of supercritical fluids on nonporous graphitized thermal carbon black. Two methods are employed in the analysis. One is the molecular layer structure theory (MLST), proposed recently by our group, and the other is the grand canonical Monte Carlo (GCMC) simulation. They were applied to describe the adsorption of argon, krypton, methane, ethylene, and sulfur hexafluoride on graphitized thermal carbon black. It was found that the MLST describes all the experimental data at various temperatures well. Results from GCMC simulations describe well the data at low pressure but show some deviations at higher pressures for all the adsorbates tested. The question of negative surface excess is also discussed in this paper.
Resumo:
In this paper, we investigate the effect of the solid surface on the fluid-fluid intermolecular potential energy. This modified fluid-fluid interaction energy due to the inducement of a solid surface is used in the grand canonical Monte Carlo (GCMC) simulation of various noble gases, nitrogen, and methane on graphitized thermal carbon black. This effect is such that the effective interaction potential energy between two particles close to surface is less than the potential energy if the solid substrate is not present. With this modification the GCMC simulation results agree extremely well with the experimental data over a wide range of pressures while the simulation results with the unmodified potential energy give rise to a shoulder near the neighborhood of monolayer coverage and the significant overprediction of the second and higher layer coverages. In particular the unmodified GCMC results exhibit very sharp change in those higher layers while the experimental data have a much gradual change in the uptake. We will illustrate this theory with adsorption data of argon, xenon, neon, nitrogen, and methane on graphitized thermal carbon black.
Resumo:
In this paper, we studied vapor-liquid equilibria (VLE) and adsorption of ethylene on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers. Simple models of a one-center Lennard-Jones (LJ) potential and a two-center united atom (UA)-LJ potential are investigated to study the impact of the choice of potential models in the description of VLE and adsorption behavior. Here, we used a Monte Carlo simulation method with grand canonical Monte Carlo (GCMC) and Gibbs ensemble Monte Carlo ensembles. The one-center potential model cannot describe adequately the VLE over the practical range of temperature from the triple point to the critical point. On the other hand, the two-center potential model (Wick et al. J. Phys. Chem. B 2000, 104, 8008-8016) performs well in the description of VLE (saturated vapor and liquid densities and vapor pressure) over the wide range of temperature. This UA-LJ model is then used in the study of adsorption of ethylene on graphitized thermal carbon black and in slit pores. Agreement between the GCMC simulation results and the experimental data on graphitized thermal carbon black for moderate temperatures is excellent, demonstrating that the potential of the GCMC method and the proper choice of potential model are essential to investigate adsorption. For slit pores of various sizes, we have found that the behavior of ethylene exhibits a number of features that are not manifested in the study of spherical LJ particles. In particular, the singlet density distribution versus distance across the pore and the angle between the molecular axis and the z direction provide rich information about the way molecules arrange themselves when the pore width is varied. Such an arrangement has been found to be very sensitive to the pore width.