154 resultados para GBM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose/Objective(s): RTwith TMZ is the standard for GBM. dd TMZ causes prolongedMGMTdepletion in mononuclear cells and possibly in tumor. The RTOG 0525 trial (ASCO 2011) did not show an advantage from dd TMZ for survival or progression free survival. We conducted exploratory, hypothesis-generating subset analyses to detect possible benefit from dd TMZ.Materials/Methods: Patients were randomized to std (150-200 mg/m2 x 5 d) or dd TMZ (75-100 mg/m2 x 21 d) q 4 weeks for 6- 12 cycles. Eligibility included age.18, KPS$ 60, and. 1 cm2 tissue for prospective MGMTanalysis for stratification. Furtheranalyses were performed for all randomized patients (''intent-to-treat'', ITT), and for all patients starting protocol therapy (SPT). Subset analyses were performed by RPA class (III, IV, V), KPS (90-100, = 50,\50), resection (partial, total), gender (female, male), and neurologic dysfunction (nf = none, minor, moderate).Results: No significant difference was seen for median OS (16.6 vs. 14.9 months), or PFS (5.5 vs. 6.7 months, p = 0.06). MGMT methylation was linked to improved OS (21.2 vs. 14 months, p\0.0001), and PFS (8.7 vs. 5.7 months, p\0.0001). For the ITT (n = 833), there was no OS benefit from dd TMZ in any subset. Two subsets showed a PFS benefit for dd TMZ: RPA class III (6.2 vs. 12.6 months, HR 0.69, p = 0.03) and nf = minor (HR 0.77, p = 0.01). For RPA III, dd dramatically delayed progression, but post-progression dd patients died more quickly than std. A similar pattern for nf = minor was observed. For the SPT group (n = 714) there was neither PFS nor OS benefit for dd TMZ, overall. For RPA class III and nf = minor, there was a PFS benefit for dd TMZ (HR 0.73, p = 0.08; HR 0.77, p = 0.02). For nf = moderate subset, both ITT and SPT, the std arm showed superior OS (14.4 vs. 10.9 months) compared to dd, without improved PFS (HR 1.46, p = 0.03; and HR 1.74, p = 0.01. In terms of methylation status within this subset, there were more methylated patients in the std arm of the ITT subset (n = 159; 32 vs. 24%). For the SPT subset (n = 124), methylation status was similar between arms.Conclusions: This study did not demonstrate improved OS for dd TMZ for any subgroup, but for 2 highly functional subgroups, PFS was significantly increased. These data generate the testable hypothesis that intensive treatment may selectively improve disease control in those most likely able to tolerate dd therapy. Interpretation of this should be considered carefully due to small sample size, the process of multiple observations, and other confounders.Acknowledgment: This project was supported by RTOG grant U10 CA21661, and CCOP grant U10 CA37422 from the National Cancer Institute (NCI).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy with concomitant and adjuvant TMZ is the standard of care for newly diagnosed GBM. MGMT methylation status may be an important determinant of treatment response. This trial, conducted by the RTOG, EORTC, and NCCTG, determined if intensified TMZ improves survival (OS) or progression free survival (PFS) in all patients or specific to MGMT status. Eligibility criteria included age . 18 yrs, KPS ≥ 60, and existence of a tissue block with . 1cm2 tumor for prospective MGMT and retrospective molecular analysis. Patients were randomized to Arm 1: standard TMZ (150-200 mg/m2 x 5 d) or Arm 2: dd TMZ (75-100 mg/m2 x 21 d) q 4 wks for 6-12 cycles. Symptom burden, quality of life (QOL), and neurocognition were prospectively and longitudinally assessed in a patient subset. 833 patients were randomized (1173 registered). Inadequate tissue (n ¼ 144) was the most frequent reason for nonrandomization.No statistical difference was observed between Arms 1 and 2 for median OS (16.6, 14.9 mo, p ¼ 0.63), median PFS (5.5, 6.7 mo, p ¼ 0.06), or methylation status. MGMT methylation was associated with improved OS (21.2, 14 mo, p , 0.0001), PFS (8.7, 5.7 mo, p , 0.0001), and treatment response (p ¼ 0.012). Cox modeling identifiedMGMT status and RPA class as significant predictors of OS; treatment arm and radiation technique (EORTC vs. RTOG) were not. There was increased grade ≥ 3 toxicity in Arm 2 (19%, 27%, p ¼ 0.008), which was mostly lymphopenia and fatigue. This study did not demonstrate improved efficacy for dd TMZ for newly diagnosed GBM regardless of methylation status. However, it confirmed the prognostic significance of MGMT methylation in GBM, demonstrated the feasibility of tumor tissue collection, molecular stratification, and collection of patient outcomes in a large transatlantic intergroup trial, thereby establishing a viable clinical trial paradigm. Support: NCI U10 CA 21661 and U10 CA37422.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Prognostic models and nomograms were recently developed to predict survival of patients with newly diagnosed glioblastoma multiforme (GBM).1 To improve predictions, models should be updated with the most recent patient and disease information. Nomograms predicting patient outcome at the time of disease progression are required. METHODS: Baseline information from 299 patients with recurrent GBM recruited in 8 phase I or II trials of the EORTC Brain Tumor Group was used to evaluate clinical parameters as prognosticators of patient outcome. Univariate (log rank) and multivariate (Cox models) analyses were made to assess the ability of patients' characteristics (age, sex, performance status [WHO PS], and MRC neurological deficit scale), disease history (prior treatments, time since last treatment or initial diagnosis, and administration of steroids or antiepileptics) and disease characteristics (tumor size and number of lesions) to predict progression free survival (PFS) and overall survival (OS). Bootstrap technique was used for models internal validation. Nomograms were computed to provide individual patients predictions. RESULTS: Poor PS and more than 1 lesion had a significant prognostic impact for both PFS and OS. Antiepileptic drug use was significantly associated with worse PFS. Larger tumors (split by the median of the largest tumor diameter >42.5 mm) and steroid use had shorter OS. Age, sex, neurologic deficit, prior therapies, and time since last therapy or initial diagnosis did not show independent prognostic value for PFS or OS. CONCLUSIONS: This analysis confirms that PS but not age is a major prognostic factor for PFS and OS. Multiple or large tumors and the need to administer steroids significantly increase the risk of progression and death. Nomograms at the recurrence could be used to obtain accurate predictions for the design of new targeted therapy trials or retrospective analyses. (1. T. Gorlia et al., Nomograms for predicting survival of patients with newly diagnosed glioblastoma. Lancet Oncol 9 (1): 29-38, 2008.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current therapeutic strategies against glioblastoma (GBM) have failed to prevent disease progression and recurrence effectively. The part played by molecular imaging (MI) in the development of novel therapies has gained increasing traction in recent years. For the first time, using expertise from an integrated multidisciplinary group of authors, herein we present a comprehensive evaluation of state-of-the-art GBM imaging and explore how advances facilitate the emergence of new treatment options. We propose a novel next-generation treatment paradigm based on the targeting of multiple hallmarks of cancer evolution that will heavily rely on MI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapport de maîtrise présenté à la faculté de médecine en vue de l’obtention du grade de M.Sc.A. en génie biomédical - Option génie clinique

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galectin-3 (gal-3) is a β-galactoside binding protein related to many tumoral aspects, e.g. angiogenesis, cell growth and motility and resistance to cell death. Evidence has shown its upregulation upon hypoxia, a common feature in solid tumors such as glioblastoma multiformes (GBM). This tumor presents a unique feature described as pseudopalisading cells, which accumulate large amounts of gal-3. Tumor cells far from hypoxic/nutrient deprived areas express little, if any gal-3. Here, we have shown that the hybrid glioma cell line, NG97ht, recapitulates GBM growth forming gal-3 positive pseudopalisades even when cells are grafted subcutaneously in nude mice. In vitro experiments were performed exposing these cells to conditions mimicking tumor areas that display oxygen and nutrient deprivation. Results indicated that gal-3 transcription under hypoxic conditions requires previous protein synthesis and is triggered in a HIF-1α and NF-κB dependent manner. In addition, a significant proportion of cells die only when exposed simultaneously to hypoxia and nutrient deprivation and demonstrate ROS induction. Inhibition of gal-3 expression using siRNA led to protein knockdown followed by a 1.7-2.2 fold increase in cell death. Similar results were also found in a human GBM cell line, T98G. In vivo, U87MG gal-3 knockdown cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and increased time for tumor engraftment. These results indicate that gal-3 protected cells from cell death under hypoxia and nutrient deprivation in vitro and that gal-3 is a key factor in tumor growth and engraftment in hypoxic and nutrient-deprived microenvironments. Overexpression of gal-3, thus, is part of an adaptive program leading to tumor cell survival under these stressing conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RECK is an anti-tumoral gene whose activity has been associated with its inhibitory effects regulating MMP-2, MMP-9, and MT1-MMP. RECK level decreases as gliobastoma progresses, varying from less invasive grade II gliomas to very invasive human glioblastoma multiforme (GBM). Since RECK expression and glioma invasiveness show an inverse correlation, the aim of the present study is to investigate whether RECK expression would inhibit glioma invasive behavior. We conducted this study to explore forced RECK expression in the highly invasive T98G human GBM cell line. Expression levels as well as protein levels of RECK, MMP-2, MMP-9, and MT1-MMP were assessed by qPCR and immunoblotting in T98G/RECK+ cells. The invasion and migration capacity of RECK+ cells was inhibited in transwell and wound assays. Dramatic cytoskeleton modifications were observed in the T98G/RECK+ cells, when compared to control cells, such as the abundance of stress fibers (contractile actin-myosin II bundles) and alteration of lamellipodia. T98G/RECK+ cells also displayed phosphorylatecl focal adhesion kinase (P-FAK) in mature focal adhesions associated with stress fibers; whereas P-FAK in control cells was mostly associated with immature focal complexes. Interestingly, the RECK protein was predominantly localized at the leading edge of migrating cells, associated with membrane ruffles. Unexpectedly, introduced expression of RECK effectively inhibited the invasive process through rearrangement of actin filaments, promoting a decrease in migratory ability. This work has associated RECK tumor-suppressing activity with the inhibition of motility and invasion in this GBM model, which are two glioma characteristics responsible for the inefficiency of current available treatments. J. Cell. Biochem. 110: 52-61, 2010. (C) 2010 Wiley-Liss. Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Goodpasture`s syndrome (GS) is an auto-immune disease that is part of the pulmonary-renal syndrome spectrum. It is characterized by the linear deposition of anti-glomerular basement membrane antibodies (anti-GBM) in glomerular and alveolar basement membrane, resulting in alveolar hemorrhage and progressive glomerulonephritis. An early diagnosis is important to decrease clinical morbidity. In the present work, we illustrate a GS case, initially diagnosed as Wegener`s granulomatosis.The patient showed favorable clinical evolution with corticosteroid therapy associated with plasmapheresis and cyclophosphamide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) alterations and their clinical and pathological implications have been analyzed in several human malignancies. A marked decrease in mtDNA copy number along with the increase in malignancy was observed in diffusely infiltrating astrocytomas (24 WHO grade II, 18 grade III, and 78 grade IV or GBM) compared to non-neoplastic brain tissues, being mostly depleted in GBM. Although high relative gene expression levels of mtDNA replication regulators (mitochondrial polymerase catalytic subunit (POLG), transcription factors A (TFAM), B1 (TFB1M) and B2 (TFB2M)) were detected, it cannot successfully revert the mtDNA depletion observed in our samples. On the other hand, a strong correlation among the expression levels of mitochondrial transcription factors corroborates with the TFAM role in the direct control of TFB1M and TFB2M during initiation of mtDNA replication. POLG expression was related to decreased mtDNA copy number, and its overexpression associated with TFAM expression levels also have an impact on long-term survival among GBM patients, interpreted as a potential predictive factor for better prognosis. (C) 2010 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma multiforme ( GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high- density oligonucleotide arrays, and performed gene expression analyses using next- generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 ( IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 61% for 1 Gy and was completely reduced at 16 Gy. By performing the microarray technique, 859 cDNA clones were analyzed. The Significance Analysis of Microarray algorithm indicated 196 significant expressed genes (false discovery rate (FDR) = 0.42%): 67 down-regulated and 97 up-regulated genes, which belong to several classes: metabolism, adhesion/cytoskeleton, signal transduction, cell cycle/apoptosis, membrane transport, DNA repair/DNA damage signaling, transcription factor, intracellular signaling, and RNA processing. Differential expression patterns of five selected genes (HSPA9B, INPP5A, PIP5K1A, FANCG, and TPP2) observed by the microarray analysis were further confirmed by the quantitative real time RT-PCR method, which demonstrated an up-regulation status of those genes. These results indicate a broad spectrum of biological processes (which may reflect the radio-resistance of U343 cells) that were altered in irradiated glioma cells, so as to guarantee cell survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have performed cDNA microarray analyses to identify gene expression differences between highly invasive glioblastoma multiforme (GBM) and typically benign pilocytic astrocytomas (PA). Despite the significant clinical and pathological differences between the 2 tumor types, only 63 genes were found to exhibit 2-fold or greater overexpression in GBM as compared to PA. Forty percent of these genes are related to the regulation of the cell cycle and mitosis. QT-PCR validation of 6 overexpressed genes: MELK, AUKB, ASPM, PRC1, IL13RA2 and KIAA0101 confirmed at least a 5-fold increase in the average expression levels in GBM. Maternal embryonic leucine zipper kinase (MELK) exhibited the most statistically significant difference. A more detailed investigation of MELK expression was undertaken to study its oncogenic relevance. In the examination of more than 100 tumors of the central nervous system, we found progressively higher expression of MELK with astrocytoma grade and a noteworthy uniformity of high level expression in GBM. Similar level of overexpression was also observed in medulloblastoma. We found neither gene promoter hypomethylation nor amplification to be a factor in MELK expression, but were able to demonstrate that MELK knockdown in malignant astrocytoma cell lines caused a reduction in proliferation and anchorage-independent growth in in vitro assays. Our results indicate that GBM and PA differ by the expression of surprisingly few genes. Among them, MELK correlated with malignancy grade in astrocytomas and represents a therapeutic target for the management of the most frequent brain tumors in adult and children. (C) 2007 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prospective studies have shown rapid engraftment using granulocyte-colony-stimulating factor-mobilized peripheral blood stem cells (G-PBSCs) for allogeneic transplantation, though the risks for graft-versus-host disease (GVHD) may be increased. It was hypothesized that the use of G-CSF to prime bone marrow (GBM) would allow rapid engraftment without increased risk for GVHD compared with G-PBSC. Patients were randomized to receive G-BM or G-PBSCs for allogeneic stem cell transplantation. The study was designed (beta < .8) to detect a difference in the incidence of chronic GVHD of 33% ( < .05). The plan was to recruit 100 patients and to conduct an interim analysis when the 6-month follow-up point was reached for the first 50 patients. Fifty-seven consecutive patients were recruited (G-BM, n = 28; G-PBSC, n = 29). Patients in the G-PBSC group received 3-fold more CD34(+) and 9-fold more CD3(+) cells. Median times to neutrophil (G-BM, 16 days; G-PBSC, 14 days; P < .1) and platelet engraftment (G-BM, 14 days; G-PBSC, 12 days; P < .1) were similar. The use of G-PBSC was associated with steroid refractory acute GVHD (G-BM, 0%; G-PBSC, 32%; P < .001), chronic GVHD (G-BM, 22%; G-PBSC, 80%; P < .02), and prolonged requirement for immunosuppressive therapy (G-BM, 173 days; G-PBSC, 680 days; P < .009). Survival was similar for the 2 groups. Compared with G-PBSC the use of G-BM resulted in comparable engraftment, reduced severity of acute GVHD, and less subsequent chronic GVHD. (Blood. 2001;98:3186-3191) (C) 2001 by The American Society of Hematology.