966 resultados para GATED POTASSIUM CHANNELS
Resumo:
The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na-v,.) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na-v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na-v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that Occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP. and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na-v. channel gating, observed clinically in response to ciguatera poisoning. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We describe a 61-year-old patient with clinical evidence of limbic encephalitis who improved with anticonvulsant treatment only, that is, without the use of immunosuppressive agents. Three years following occurrence of anosmia, increasing memory deficits, and emotional disturbances, he presented with new-onset temporal lobe epilepsy, with antibodies binding to neuronal voltage-gated potassium channels and bitemporal hypometabolism on FDG-PET scan; the MRI scan was normal. This is most likely a case of spontaneous remission, illustrating that immunosuppressive therapy might be suspended in milder courses of limbic encephalitis. It remains open whether treatment with anticonvulsant drugs played an additional beneficiary role through the direct suppression of seizures or, additionally, through indirect immunomodulatory side effects.
Resumo:
Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation.
Resumo:
Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.
Resumo:
Several different methods have been employed in the study of voltage-gated ion channels. Electrophysiological studies on excitable cells in vertebrates and molluscs have shown that many different voltage-gated potassium (K+) channels and sodium channels may coexist in the same organism. Parallel genetic studies in Drosophila have identified mutations in several genes that alter the properties of specific subsets of physiologically identified ion channels. Chapter 2 describes molecular studies that identify two Drosophila homologs of vertebrate sodium-channel genes. Mutations in one of these Drosophila sodium-channel genes are shown to be responsible for the temperature-dependent paralysis of a behavioural mutant parats. Evolutionary arguments, based on the partial sequences of the two Drosophila genes, suggest that subfamilies of voltage-gated sodium channels in vertebrates remain to be identified.
In Drosophila, diverse voltage-gated K+ channels arise from alternatively spliced mRNAs generated at the Shaker locus. Chapter 3 and the Appendices describe the isolation and characterization of several human K+-channel genes, similar in sequence to Shaker. Each of these human genes has a highly conserved homolog in rodents; thus, this K+-channel gene family probably diversified prior to the mammalian radiation. Functional K+ channels encoded by these genes have been expressed in Xenopus oocytes and their properties have been analyzed by electrophysiological methods. These studies demonstrate that both transient and noninactivating voltage-gated K+ channels may be encoded by mammalian genes closely related to Shaker. In addition, results presented in Appendix 3 clearly demonstrate that independent gene products from two K+-channel genes may efficiently co-assemble into heterooligomeric K+ channels with properties distinct from either homomultimeric channel. This finding suggests yet another molecular mechanism for the generation of K+-channel diversity.
Resumo:
Voltage-gated potassium (Kv) channels are essential components of neuronal excitability. The Kv3.4 channel protein is widely distributed throughout the central nervous system (CNS), where it can form heteromeric or homomeric Kv3 channels. Electrophysiological studies reported here highlight a functional role for this channel protein within neurons of the dorsal vagal nucleus (DVN). Current clamp experiments revealed that blood depressing substance (BDS) and intracellular dialysis of an anti-Kv3.4 antibody prolonged the action potential duration. In addition, a BDS sensitive, voltage-dependent, slowly inactivating outward current was observed in voltage clamp recordings from DVN neurons. Electrical stimulation of the solitary tract evoked EPSPs and IPSPs in DVN neurons and BDS increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. This presynaptic modulation was action potential dependent as revealed by ongoing synaptic activity. Given the role of the Kv3 proteins in shaping neuronal excitability, these data highlight a role for homomeric Kv3.4 channels in spike timing and neurotransmitter release in low frequency firing neurons of the DVN.
Resumo:
Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories—hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.
Resumo:
Cyclic nucleotides modulate potassium (K) channel activity in many cells and are thought to act indirectly by inducing channel protein phosphorylation. Herein we report the isolation from rabbit of a gene encoding a K channel (Kcn1) that is specifically activated by cGMP and not by cAMP. Analysis of the deduced amino acid sequence (725 amino acids) indicates that, in addition to a core region that is highly homologous to Shaker K channels, Kcn1 also contains a cysteine-rich region similar to that of ligand-gated ion channels and a cyclic nucleotide-binding region. Northern blot analysis detects gene expression in kidney, aorta, and brain. Kcn1 represents a class of K channels that may be specifically regulated by cGMP and could play an important role in mediating the effects of substances, such as nitric oxide, that increase intracellular cGMP.
Resumo:
Mutation studies have identified a region of the S5-S6 loop of voltage-gated K+ channels (P region) responsible for teraethylammonium (TEA) block and permeation/selectivity properties. We previously modeled a similar region of the Na+ channel as four beta-hairpins with the C strands from each of the domains forming the external vestibule and with charged residues at the beta-turns forming the selectivity filter. However, the K+ channel P region amino acid composition is much more hydrophobic in this area. Here we propose a structural motif for the K+ channel pore based on the following postulates (Kv2.1 numbering). (i) The external TEA binding site is formed by four Tyr-380 residues; P loop residues participating in the internal TEA binding site are four Met-371 and Thr-372 residues. (ii) P regions form extended hairpins with beta-turns in sequence ITMT. (iii) only C ends of hairpins form the inner walls of the pore. (iv) They are extended nonregular strands with backbone carbonyl oxygens of segment VGYGD facing the pore with the conformation BRLRL. (v) Juxtaposition of P loops of the four subunits forms the pore. Fitting the external and internal TEA sites to TEA molecules predicts an hourglass-like pore with the narrowest point (GYG) as wide as 5.5 A, suggesting that selectivity may be achieved by interactions of carbonyls with partially hydrated K+. Other potential cation binding sites also exist in the pore.
Resumo:
Structurally novel compounds able to block voltage-gated Ca2+ channels (VGCCs) are currently being sought for the development of new drugs directed at neurological disorders. Fluorescence techniques have recently been developed to facilitate the analysis of VGCC blockers in a multi-well format. By utilising the small cell lung carcinoma cell line, NCI-H146, we were able to detect changes in intracellular Ca2+ concentration ([Ca2+]i) using a fluorescence microplate reader. NCI-H146 cells have characteristics resembling those of neuronal cells and express multiple VGCC subtypes, including those of the L-, N- and P-type. We found that K+-depolarisation of fluo-3 loaded NCI-H146 cells causes a rapid and transient increase in fluorescence, which was readily detected in a 96-well plate. Extracts of Australian plants, including those used traditionally as headache or pain treatments, were tested in this study to identify those affecting Ca2+ influx following membrane depolarisation of NCI-H146 cells. We found that E. bignoniiflora, A. symphyocarpa and E. vespertilio caused dose-dependent inhibition of K+-depolarised Ca2+ influx, with IC50 values calculated to be 234, 548 and 209 μg/ml, respectively. This data suggests an effect of these extracts on the function of VGCCs in these cells. Furthermore, we found similar effects using a fluorescence laser imaging plate reader (FLIPR) that allows simultaneous measurement of real-time fluorescence in a multi-well plate. Our results indicate that the dichloromethane extract of E. bignoniiflora and the methanolic extract of E. vespertilio show considerable promise as antagonists of neuronal VGCCs. Further analysis is required to characterise the function of the bioactive constituents in these extracts and determine their selectivity on VGCC subtypes.
Resumo:
Nedd4-2, a HECT (homologous with E6-associated protein C-terminus)-type ubiquitin protein ligase, has been implicated in regulating several ion channels, including Navs (voltage-gated sodium channels). In Xenopus oocytes Nedd4-2 strongly inhibits the activity of multiple Navs. However, the conditions under which Nedd4-2 mediates native Nav regulation remain uncharacterized. Using Nedd4-2-deficient mice, we demonstrate in the present study that in foetal cortical neurons Nedd4-2 regulates Navs specifically in response to elevated intracellular Na(+), but does not affect steady-state Nav activity. In dorsal root ganglia neurons from the same mice, however, Nedd4-2 does not control Nav activities. The results of the present study provide the first physiological evidence for an essential function of Nedd4-2 in regulating Navs in the central nervous system.
Resumo:
Spider venoms contain a plethora of insecticidal peptides that act on neuronal ion channels and receptors. Because of their high specificity, potency and stability, these peptides have attracted much attention as potential environmentally friendly insecticides. Although many insecticidal spider venom peptides have been isolated, the molecular target, mode of action and structure of only a small minority have been explored. Sf1a, a 46-residue peptide isolated from the venom of the tube-web spider Segesteria florentina, is insecticidal to a wide range of insects, but nontoxic to vertebrates. In order to investigate its structure and mode of action, we developed an efficient bacterial expression system for the production of Sf1a. We determined a high-resolution solution structure of Sf1a using multidimensional 3D/4D NMR spectroscopy. This revealed that Sf1a is a knottin peptide with an unusually large β-hairpin loop that accounts for a third of the peptide length. This loop is delimited by a fourth disulfide bond that is not commonly found in knottin peptides. We showed, through mutagenesis, that this large loop is functionally critical for insecticidal activity. Sf1a was further shown to be a selective inhibitor of insect voltage-gated sodium channels, consistent with its 'depressant' paralytic phenotype in insects. However, in contrast to the majority of spider-derived sodium channel toxins that function as gating modifiers via interaction with one or more of the voltage-sensor domains, Sf1a appears to act as a pore blocker.
Resumo:
\alpha T3-1 cells showed a slope resistance of 1.8 G\omega. The cell membrane surface was not smooth and a scanning electron micrograph showed a complex structure with blebs and microvilli like projections. The cells showed spontaneous fluctuations at zero current resting membrane potential and hyperpolarization increased the amplitude of membrane potential fluctuations. The amplitude of membrane potential fluctuations at hyperpolarized membrane potential was attenuated on application of TTX to the bath solution. The potential at which half steady state inactivation of isolated sodium current occurred, was at a very hyperpolarized potential (-95.4 mV). The study presented in this paper shows that the voltage gated sodium channels contribute to the increase in the amplitude of electrical noise with hyperpolarization in \alpha T3-1 cells.