992 resultados para GARCAS POND


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microprobe mineral compositions of olivine, plagioclase, clinopyroxene, chrome spinel, ilmenite, and titanomagnetite are presented for 7 samples from 4 flows of hawaiite and one flow of tholeiitic basalt from Hole 430A at Ojin Seamount, 4 samples from 3 flows of alkalic basalt from Hole 432A at Nintoku Seamount, and 29 samples from 2 flows of alkalic basalt and 24 flows of tholeiitic basalt from Holes 433A, 433B, and 433C at Suiko Seamount. The four hawaiite flows from Hole 430A on Ojin Seamount have nearly identical mineralogy. The plagioclase phenocrysts and calculated equilibrium olivine appear to have crystallized at about 1175°C; the groundmass plagioclase crystallized from about 1135° to 1010°C; and the Fe-Ti oxides equilibrated at temperatures from 1000°C to 720°C under oxygen fugacities of 10**-11 to 10**-17. The single tholeiitic flow contains glomerocrysts of plagioclase (An80 to An65) and clinopyroxene (Wo43En46Fsn to Wo42En45Fs13). The plagioclase phenocrysts give calculated temperatures as high as 1400°C, indicating that they were not equilibrated with a magma having the bulk rock composition. The plagioclase groundmass crystallized at 1120° to 1070°C, and the Fe-Ti oxides equilibrated at 1070° to 930°C under oxygen fugacities of 10**-10 to 10**-12. Using mineral compositions of Hawaiian basalts as a guide, we infer that the hawaiite flows were erupted during the post-caldera alkalic eruptive stage and the tholeiite was erupted during the shield-building or caldera collapse stage. The three alkalic basalt flows from Hole 432A on Nintoku Seamount have similar mineralogy, although Flow Units 1 and 2 contain much more abundant plagioclase phenocrysts. The groundmass plagioclase crystallized at temperatures between 1175° and 1000°C. The olivine and plagioclase phenocrysts do not appear to be in equilibrium with the enclosing magmas. The mineral compositions suggest that these samples are intermediate between alkalic basalt and hawaiite; they probably erupted during the post-caldera alkalic stage of eruption. The two analyzed alkalic basalt flows are the two youngest flows recovered at Holes 433A, 433B, and 433C. Flow Unit 1 contains abundant sector-zoned clinopyroxene, and Flow Unit 2 contains rare kink-banded olivine xenocrysts. The plagioclase phenocrysts yield calculated temperatures of 1440° to 1250°C, indicating that they are probably not cognate. Calculated-equilibrium olivine indicates crystallization of olivine at about 1170°C. The Fe-Ti oxides equilibrated at temperatures of 1140° to 870°C under oxygen fugacities of 10**-9 to 10**-14. The groundmass plagioclase crystallized at temperatures of 1178° to 1035 °C. The mineral compositions indicate that these alkalic basalts erupted during the post-caldera alkalic eruptive stage. The 24 analyzed tholeiitic basalts are subdivided on the basis of phenocryst abundances into olivine tholeiites, plagioclase tholeiites, and tholeiites. The crystallization sequence appears to have been chrome spinel, olivine, plagioclase, and clinopyroxene as phenocryst phases, followed by and overlapping with groundmass crystallization of plagioclase (1180° to 920°C), clinopyroxene, and Fe-Ti oxides (1140° to 670°C). At least three flows contain pigeonite. The mineral compositions indicate that all the samples from Flow Unit 4 downward are tholeiitic basalts, although Flow Unit 64 has mineral compositions transitional to those in alkalic basalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of laser ablation-inductively coupled plasma-mass spectrometry has revolutionized the analysis of tephras by providing (1) an efficient and precise method for determining abundances of a wide variety of trace elements at low concentrations in individual glass shards and (2) assessment of geochemical heterogeneities within individual ash horizons. This development is important for petrogenetic studies of intraoceanic arc systems, where tephras provide the most complete temporal record of magmatism. Results from the Izu-Bonin and Mariana arc systems indicate that despite close geographical proximity and similar tectonic evolution, they contrast strongly in terms of geochemical evolution since 35 Ma. Whereas the Mariana tephras have exceptional compositional diversity, ranging from low-K (Oligocene), to high-K (Miocene), and subsequently medium-K compositions (Pliocene-Quaternary), the Izu-Bonin arc has been dominated by low-K compositions throughout. The Mariana increases in K are paralleled by increases in abundances of incompatible trace elements and by increased values of diagnostic ratios (e.g., Nb/yb and Th/yb) regarded as monitors of potential mantle-source fertility. The relative uniformity of Nb/yb and Nb/Zr ratios in Izu-Bonin tephras indicates that cyclic processes of backarc basin development and mantle depletion do not necessarily induce large-scale temporal geochemical variations in the associated arc. Temporal variability within the Mariana arc, and its divergence from the Izu-Bonin arc ca. 13 Ma, can be traced to a major injection of subducted sediment in the Mariana system at this time.