956 resultados para GABA RECEPTORS
Resumo:
The amygdala is intimately involved in emotional behavior, and its role in the generation of anxiety and conditioned fear is well known. Benzodiazepines, which are commonly used for the relief of anxiety, are thought to act by enhancing the action of the inhibitory transmitter GABA. We have examined the properties of GABA-mediated inhibition in the amygdala. Whole-cell recordings were made from neurons in the lateral division of the central amygdala. Application of GABA evoked a current that reversed at the chloride equilibrium potential. Application of the GABA antagonists bicuculline or SR95531 inhibited the GABA-evoked current in a manner consistent with two binding sites. Stimulation of afferents to neurons in the central amygdala evoked an IPSC that was mediated by the release of GABA. The GABA(A) receptor antagonists bicuculline and picrotoxin failed to completely block the IPSC. The bicuculline-resistant IPSC was chloride-selective and was unaffected by GABA(B)-receptor antagonists. Furthermore, this current was insensitive to modulation by general anesthetics or barbiturates. In contrast to their actions at GABA(A) receptors, diazepam and flurazepam inhibited the bicuculline-resistant IPSC in a concentration-dependent manner. These effects were fully antagonized by the benzodiazepine site antagonist Ro15-1788. We conclude that a new type of ionotropic GABA receptor mediates fast inhibitory transmission in the central amygdala. This receptor may be a potential target for the development of new therapeutic strategies for anxiety disorders.
Resumo:
Abstract : GABA, the primary inhibitory neurotransmitter, and its receptors play an important role in modulating neuronal activity in the central nervous system and are implicated in many neurological disorders. In this study, GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas TC (= primary auditory area), TB, and TA. Both hemispheres from nine neurologically normal subjects and from four patients with subacute or chronic stroke were included. In normal brains, GABAA receptor subunit (α1, α2, & β2/3) labeling produced neuropil staining throughout all cortical layers as well as labeling fibers and neurons in layer VI for all auditory areas. Densitometry profiles displayed differences in GABAA subunit expression between primary and non-primary areas. In contrast to the neuropil labeling of GABAA subunits, GABAB1 and GABAB2 subunit immunoreactivity was revealed on neuronal somata and proximal dendritic shafts of pyramidal and non-pyramidal neurons in layers II-III, more strongly on supra- than in infragranular layers. No differences were observed between auditory areas. In stroke cases, we observed a downregulation of the GABAA receptor α2 subunit in granular and infragranular layers, while the other GABAA and the two GABAB receptor subunits remained unchanged. Our results demonstrate a strong presence of GABAA and GABAB receptors in the human auditory cortex, suggesting a crucial role of GABA in shaping auditory responses in the primary and non-primary auditory areas. The differential laminar and area expression of GABAA subunits that we have found in the auditory areas and which is partially different from that in other cortical areas speaks in favor of a fine turning of GABA-ergic transmission in these different compartments. In contrast, GABAB expression displayed laminar, but not areal differences; its basic pattern was also very similar to that of other cortical areas, suggesting a more uniform role within the cerebral cortex. In subacute and chronic stroke, the selective GABAA α2 subunit downregulation is likely to influence postlesional plasticity and susceptibility to medication. The absence of changes in the GABAB receptors suggests different regulation than in other pathological conditions, such as epilepsy, schizophrenia or bipolar disorder, in which a downregulation has been reported. Résumé : GABA, le principal neurotransmetteur inhibiteur, et ses récepteurs jouent un rôle important en tant que modulateur de l'activité neuronale dans le système nerveux central et sont impliqués dans de nombreux désordres neurologiques. Dans cette étude, l'expression des sous-unités des récepteur GABAA et GABAB a été visualisée par immunohistochimie dans les aires auditives du cortex humains: le TC (= aire auditif primaire), le TB, et le TA. Les deux hémisphères de neuf sujets considérés normaux du point de vue neurologique et de quatre patients ayant subis un accident cérébro-vasculaire et se trouvant dans la phase subaiguë ou chronique étaient inclues. Dans les cerveaux normaux, les immunohistochimies contre les sous-unités α1, α2, & β2/3 du récepteur GABAA ont marqué le neuropil dans toutes les couches corticales ainsi que les fibres et les neurones de la couche VI dans toutes les aires auditives. Le profile densitométrique montre des différences dans l'expression des sous-unités du récepteur GABAA entre les aires primaires et non-primaires. Contrairement au marquage de neuropil par les sous-unités du recepteur GABAA, 1'immunoréactivité des sous-unités GABAB1 et GABAB2 a été révélée sur les corps cellulaires neuronaux et les dendrites proximaux des neurones pyramidaux et non-pyramidaux dans les couches II-III et est plus dense dans les couches supragranulaires que dans les couches infragranulaires. Aucune différence n'a été observée entre les aires auditives. Dans des cas lésionnels, nous avons observé une diminution de la sous-unité α2 du récepteur GABAA dans les couches granulaires et infragranulaires, alors que le marquage des autres sous-unités du récepteur GABAA et des deux sous-unités de récepteur GABAB reste inchangé. Nos résultats démontrent une présence forte des récepteurs GABAA et GABAB dans le cortex auditif humain, suggérant un rôle crucial du neurotransmetteur GABA dans la formation de la réponse auditive dans les aires auditives primaires et non-primaires. L'expression différentielle des sous-unités de GABAA entre les couches corticales et entre les aires auditives et qui est partiellement différente de celle observée dans d'autres aires corticales préconise une modulation fine de la transmission GABA-ergic en ces différents compartiments. En revanche, l'expression de GABAB a montré des différences laminaires, mais non régionales ; son motif d'expression de base est également très semblable à celui d'autres aires corticales, suggérant un rôle plus uniforme dans le cortex cérébral. Dans les phases subaiguë et chronique des accidents cérébro-vasculaires, la diminution sélective de la sous-unité α2 du recepteur GABAA est susceptible d'influencer la plasticité et la susceptibilité postlésionnelle au médicament. L'absence de changement pour les récepteurs GABAB suggère que le récepteur est régulé différemment après un accident cerebro-vasculaire par rapport à d'autres conditions pathologiques, telles que l'épilepsie, la schizophrénie ou le désordre bipolaire, dans lesquels une diminution de ces sous-unités a été rapportée.
Resumo:
Ionotropic gamma-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for rho subunit-containing GABA(C) over other GABA receptors. Exogenous application of the GABA(C)-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABA(C) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABA(A) receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABA(A)/GABA(C) pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone-Purkinje cell (IN-PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that rho subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABA(A) alpha 1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that rho subunits can form complexes with GABA(A) receptor alpha 1 subunits in the cerebellar cortex. Overall, these data suggest that rho subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN-PC synapses in the cerebellum.
Resumo:
GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain. Some of them are targets of benzodiazepines that are widely used in clinical practice for their sedative/hypnotic, anxiolytic, muscle relaxant and anticonvulsant effects. In order to rationally separate these different drug actions, we need to understand the interaction of such compounds with the benzodiazepine-binding pocket. With this aim, we mutated residues located in the benzodiazepine-binding site individually to cysteine. These mutated receptors were combined with benzodiazepine site ligands carrying a cysteine reactive group in a defined position. Proximal apposition of reaction partners will lead to a covalent reaction. We describe here such proximity-accelerated chemical coupling reactions of alpha(1)S205C and alpha(1)T206C with a diazepam derivative modified at the C-3 position with a reactive isothiocyanate group (-NCS). We also provide new data that identify alpha(1)H101C and alpha(1)N102C as exclusive sites of the reaction of a diazepam derivative where the -Cl atom is replaced by a -NCS group. Based on these observations we propose a relative positioning of diazepam within the benzodiazepine-binding site of alpha(1)beta(2)gamma(2) receptors.
Resumo:
The task of encoding and processing complex sensory input requires many types of transsynaptic signals. This requirement is served in part by an extensive group of neurotransmitter substances which may include thirty or more different compounds. At the next level of information processing, the existence of multiple receptors for a given neurotransmitter appears to be a widely used mechanism to generate multiple responses to a given first messenger (Snyder and Goodman, 1980). Despite the wealth of published data on GABA receptors, the existence of more than one GABA receptor was in doubt until the mid 1980's. Presently there is still disagreement on the number of types of GABA receptors, estimates for which range from two to four (DeFeudis, 1983; Johnston, 1985). Part of the problem in evaluating data concerning multiple receptor types is the lack of information on the number of gene products and their subsequent supramolecular organization in different neurons. In order to evaluate the question concerning the diversity of GABA receptors in the nervous system, we must rely on indirect information derived from a wide variety of experimental techniques. These include pharmacological binding studies to membrane fractions, electrophysiological studies, localization studies, purification studies, and functional assays. Almost all parts of the central and peripheral nervous system use GABA as a neurotransmitter, and these experimental techniques have therefore been applied to many different parts of the nervous system for the analysis of GABA receptor characteristics. We are left with a large amount of data from a wide variety of techniques derived from many parts of the nervous system. When this project was initiated in 1983, there were only a handful of pharmacological tools to assess the question of multiple GABA receptors. The approach adopted was to focus on a single model system, using a variety of experimental techniques, in order to evaluate the existence of multiple forms of GABA receptors. Using the in vitro rabbit retina, a combination of pharmacological binding studies, functional release studies and partial purification studies were undertaken to examine the GABA receptor composition of this tissue. Three types of GABA receptors were observed: Al receptors coupled to benzodiazepine and barbiturate modulation, and A2 or uncoupled GABA-A receptors, and GABA-B receptors. These results are evaluated and discussed in light of recent findings by others concerning the number and subtypes of GABA receptors in the nervous system. ^
Resumo:
We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A) and baclofen (GABA B) into the nucleus tractus solitarius (NTS) on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat) in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8) into the NTS increased basal mean arterial pressure (MAP) from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR) and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control) and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control) elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7) into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight) injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.
Resumo:
We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A) and baclofen (GABA B) into the nucleus tractus solitarius (NTS) on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat) in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8) into the NTS increased basal mean arterial pressure (MAP) from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR) and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control) and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control) elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7) into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight) injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.
Resumo:
GABA receptors are ubiquitous in the cerebral cortex and play a major role in shaping responses of cortical neurons. GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas from both hemispheres in 9 normal subjects (aged 43-85 years; time between death and fixation 6-24 hours) and in 4 stroke patients (aged 59-87 years; time between death and fixation 7-24 hours) and analyzed qualitatively for GABAA and semiquantitatively for GABAB receptor subunits. In normal brains, the primary auditory area (TC) and the surrounding areas TB and TA displayed distinct GABAA receptor subunit labeling with differences among cortical layers and areas. In postacute and chronic stroke we found a layer-selective downregulation of the alpha-2 subunit in the anatomically intact cerebral cortex of the intact and of the lesioned hemisphere, whereas the alpha-1, alpha-3 and beta-2/3 subunits maintained normal levels of expression. The GABAB receptors had a distinct laminar pattern in auditory areas and minor differences among areas. Unlike in other pathologies, there is no modulation of the GABAB receptor expression in subacute or chronic stroke.
Resumo:
Rapid and large accumulation of GABA (y-aminobutyric acid) in response to a number of plant stresses has been well documented. But the role(s) of GABA in plants is not well defined. In recent years, the possibility of GABA involvement in regulating plant growth and development has been raised. In the present study, this possibility was examined. First, to rapidly and accurately determine GABA levels in plant tissues, a spectrometric method for GABA determination was developed based on a commercially available enzyme Gabase. Seventy mM LaCb almost completely removed water-soluble pigments from plant tissues which greatly interfere with the absorbance reading at 340nm. Inactivation of GAD (glutamate decarboxylase) by immediately adding methanol to a frozen plant tissue powder was suggested to prevent GABA production during extraction. The recovery of GABA with this method was approximately 100%. Second, the relationship between GABA levels and hypocotyl elongation in soybean seedlings was analyzed using different approaches to regulate in vivo GABA levels and the elongation of hypocotyls. The following major observations were made. (1) Mechanical stimulation by stroking elevated GABA levels and concurrently induced a rapid and significant reduction in hypocotyl elongation. (2) External GABA was demonstrated to penetrate into the hypocotyls using '*C-GABA. Application of external GABA elevated in vivo GABA levels, but failed to inhibit hypocotyl elongation. (3) LaCla and blue light irradiation caused an inhibition in the elongation of dark-grown hypocotyls, whereas GABA levels were not significantly affected. (4) Ca^was suggested to be involved in the signal transduction pathway leading from mechanical stimulation to GABA production, as indicated by the ability of La'* to inhibit GABA production in stimulated hypocotyls. (5) Bicuculline, saclofen and baclofen (agonists and antagonists of GABA receptors in animals) had no effect on hypocotyl elongation. It might indicate that GABA-binding components which are structurally similar to animal GABA receptors and functionally capable of regulating plant growth may not exist in plants. Therefore, the conclusion was drawn that GABA alone is not sufficient to inhibit hypocotyl elongation. Third, chloride influx in isolated Asparagus cells was enhanced by lOmM GABA during a 3 hour incubation, but the effect was not specific for GABA. Chloride efflux was not influenced by GABA. Both influx and efflux of chloride were significantly inhibited by NPPB, a chloride channel blocker. These results suggest that GABA does not influence the activity of plant chloride channels.
Resumo:
Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy and affects 40% of the patients. Seizures arising from the mesial temporal lobe structures (i.e., amygdala and hippocampus) are common, whereas neocortical seizures are rare. In recent years, many studies aimed to identify the pattern of gene expression of neurotransmitters involved in molecular mechanisms of epilepsy. We used real-time PCR to quantify the expression of GABAA (subunits a1, beta 1, beta 2) and NMDA (subunits NR1, NR2A, and NR2B) receptor genes in amygdalae of 27 patients with TLE and 14 amygdalae from autopsy controls. The NR1 subunit was increased in patients with epilepsy when compared with controls. No differences were found in expression of NMDA subunits NR2A and NR2B or in a1, beta 1, and beta 2 subunits of GABAA receptors. Our results suggest that the NR1 subunit of NMDA receptors is involved in the amygdala hyperexcitability in some of the patients with TLE. (C) 2010 Wiley Periodicals, Inc., Inc.
Resumo:
A study was made of glycine (Gly) and γ-aminobutyric acid (GABA) receptors expressed in Xenopus oocytes injected with rat mRNAs isolated from the encephalon, midbrain, and brainstem of 18-day-old rat embryos. In oocytes injected with encephalon, midbrain, or brainstem mRNAs, the Gly-current amplitudes (membrane current elicited by Gly; 1 mM Gly) were respectively 115 ± 35, 346 ± 28, and 389 ± 22 nA, whereas the GABA-currents (1 mM GABA) were all ≤40 nA. Moreover, the Gly-currents desensitized faster in oocytes injected with encephalon or brainstem mRNAs. The EC50 for Gly was 611 ± 77 μM for encephalon, 661 ± 28 μM for midbrain, and 506 ± 18 μM for brainstem mRNA-injected oocytes, and the corresponding Hill coefficients were all ≈2. Strychnine inhibited all of the Gly-currents, with an IC50 of 56 ± 3 nM for encephalon, 97 ± 4 nM for midbrain, and 72 ± 4 nM for brainstem mRNAs. During repetitive Gly applications, the Gly-currents were potentiated by 1.6-fold for encephalon, 2.1-fold for midbrain, and 1.3-fold for brainstem RNA-injected oocytes. Raising the extracellular Ca2+ concentration significantly increased the Gly-currents in oocytes injected with midbrain and brainstem mRNAs. Reverse transcription–PCR studies showed differences in the Gly receptor (GlyR) α-subunits expressed, whereas the β-subunit was present in all three types of mRNA. These results indicate differential expression of GlyR mRNAs in the brain areas examined, and these mRNAs lead to the expression of GlyRs that have different properties. The modulation of GlyRs by Ca2+ could play important functions during brain development.
Resumo:
A class of bicuculline-insensitive gamma-aminobutyric acid (GABA) receptors, GABAC, has been identified in retina. Several lines of evidence indicate that GABAC receptors are formed partially or wholly of GABA rho subunits. These receptors generate a Cl- current in response to GABA but differ from GABAA receptors in a number of ways. Picrotoxin, widely accepted as a noncompetitive antagonist of GABAA receptors, displays competitive and noncompetitive antagonism of GABAC receptors in perch and bovine retina and GABA rho 1 receptors expressed in Xenopus oocytes. The aim of this study was to identify the molecular basis of the two components of picrotoxin inhibition of GABA rho 1 receptors. By using a domain-swapping and mutagenesis strategy, a difference in picrotoxin sensitivity between rho 1 and rho 2 receptors was localized to a single amino acid in the putative second transmembrane domain. Substitution of this amino acid with residues found in the analogous position in highly picrotoxin-sensitive glycine alpha and GABAA subunits increased the sensitivity of rho 1 mutants 10- to 500-fold. Importantly, the competitive component of picrotoxin inhibition of the rho 1 mutant receptors was almost eliminated. These findings demonstrate that an amino acid in the putative channel domain of GABA rho 1 receptors influences picrotoxin sensitivity and mediates agonist binding by an allosteric mechanism.
Resumo:
Neurons in the central amygdala express two distinct types of ionotropic GABA receptor. One is the classical GABA(A) receptor that is blocked by low concentrations of bicuculline and positively modulated by benzodiazepines. The other is a novel type of ionotropic GABA receptor that is less sensitive to bicuculline but blocked by the GABA(C) receptor antagonist (1,2,5,6-tetrohydropyridine-4-yl) methylphosphinic acid (TPMPA) and by benzodiazepines. In this study, we examine the distribution of these two receptor types. Recordings of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) showed a wide variation in amplitude. Most events had amplitudes of 100 pA. Large-amplitude events also had rise times faster than small-amplitude events. Large-amplitude events were fully blocked by 10 muM bicuculline but unaffected by TPMPA. Small amplitude events were partially blocked by both bicuculline and TPMPA. Focal application of hypertonic sucrose to the soma evoked large-amplitude mIPSCs, whereas focal dendritic application of sucrose evoked small-amplitude mIPSCs. Thus inhibitory synapses on the dendrites of neurons in the central amygdala express both types of GABA receptor, but somatic synapses expressed purely GABA(A) receptors. Minimal stimulation revealed that inhibitory inputs arising from the laterally located intercalated cells innervate dendritic synapses, whereas inhibitory inputs of medial origin innervated somatic inhibitory synapses. These results show that different types of ionotropic GABA receptors are targeted to spatially and functionally distinct synapses. Thus benzodiazepines will have different modulatory effects on different inhibitory pathways in the central amygdala.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of acoustic stimuli, being in a position to send auditory information to motor centers that participate in behaviors such as prey catching and predators` avoidance The role of the central nucleus of the IC (CIC) on fear and anxiety has been suggested on the basis that rats are able to engage in tasks to decrease the aversiveness of CIC stimulation, increased Fos immunolabeling during diverse aversive states and increased CIC auditory evoked potentials (AEP) induced by conditioned fear stimuli Additionally it was shown that brainstem AEP, represented by wave V, for which the main generator is the IC, is increased during experimentally induced anxiety Rats segregated according to their low or high emotional reactivity have been used as an important tool in the study of fear and anxiety The IC contains a high density of GABA receptors Since the efficacy of an anxiolytic compound is a function of the animal`s anxiety level, it is possible that GABA-benzodiazepine (Bzp) agents affect LA and HA animals differently In this study we investigated the GABA-Bzp influence on the modulation of AEP in rats with low (LA) or high-anxiety (HA) levels, as assessed by the elevated plus maze test (EPM) GABA-Bzp modulation on the unconditioned AEP response was analyzed by using intra CIC injections (0 2 mu l) of the GABA-Bzp agonists muscimol (121 ng) and diazepam (30 mu g) or the GABA inhibitors bicuculline (10 ng) and semicarbazide (7 mu g) In a second experiment, we evaluate the effects of contextual aversive conditioning on AEP using foot shocks as unconditioned stimuli On the unconditioned fear paradigm GABA inhibition in creased AEP in LA rats and decreases this measure in HA counterparts Muscimol was effective in reducing AEP in both LA and HA rats Contextual fear stimuli increased the magnitude of AEP In spite of no effect obtained with diazepam in LA rats the drug inhibited AEP in HA animals The specificity of the regulatory mechanisms mediated by GABA Bzp for the ascending neurocircuits responsible for the acquisition of aversive information in LA and HA animals shed light on the processing of sensory information underlying the generation of defensive reactions (C) 2010 IBRO Published by Elsevier Ltd All rights reserved