1000 resultados para G. trabeum
Resumo:
The basidiomycete fungus Gloeophyllum trabeum causes a typical brown rot and is known to use reactive oxygen species in the degradation of cellulose. The extracellular Cel12A is one of the few endo-1,4-β-glucanase produced by G. trabeum. Here we cloned cel12A and heterologously expressed it in Aspergillus niger. The identity of the resulting recombinant protein was confirmed by mass spectrometry. We used the purified GtCel12A to determine its substrate specificity and basic biochemical properties. The G. trabeum Cel12A showed highest activity on β-glucan, followed by lichenan, carboxymethylcellulose, phosphoric acid swollen cellulose, microcrystalline cellulose, and filter paper. The optimal pH and temperature for enzymatic activity were, respectively, 4.5 and 50 °C on β-glucan. Under these conditions specific activity was 239.2 ± 9.1 U mg(-1) and the half-life of the enzyme was 84.6 ± 3.5 hours. Thermofluor studies revealed that the enzyme was most thermal stable at pH 3. Using β-glucan as a substrate, the Km was 3.2 ± 0.5 mg mL(-1) and the Vmax was 0.41 ± 0.02 µmol min(-1). Analysis of the effects of GtCel12A on oat spelt and filter paper by scanning electron microscopy revealed the morphological changes taking place during the process.
Resumo:
In this study, we aimed evaluate the behavior of the brown-rot fungus Gloeophylum trabeum and white-rot fungus Pycnoporus sanguineus on thermally-modified Eucalyptus grandis wood. To this end, boards from five-year-eleven-month-old E. grandis trees, taken from the Duratex-SA company stock, were thermally-modified between 180 ºC and 220 ºC in the Laboratory of Wood Drying and Preservation at Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo state Brazil. Samples of each treatment were tested according to the ASTM D-2017 (2008) technical norm. The accelerated decay caused by the brown-rot fungus G. trabeum was compared with the decay caused by the white-rot fungus P. sanguineus, studied by Calonego et al. (2010). The results showed that (1) brown-rot fungus caused greater decay than white-rot fungus; and (2) the increase in temperature from 180 to 220 ºC caused reductions between 28.2% and 70.0% in the weight loss of E. grandis samples incubated with G. trabeum.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O presente trabalho teve como objetivo avaliar o efeito da extração da madeira de seis espécies, quatro nativas (candeia, cedro, cerejeira e jacarandá-caviúna) e duas exóticas (E. citriodora e E. gumifera), em diferentes solventes, na resistência ao apodrecimento causado pelo fungo da podridão-parda Gloeophyllum trabeum. O material foi ensaiado na forma de serragem, em face da maior facilidade para os procedimentos de extração. Dentre os resultados, pode-se destacar a baixa perda de massa ocorrida na madeira de cedro (Cedrela fissilis), evidenciando sua elevada resistência natural ao fungo testado e, ainda, à incapacidade dos solventes utilizados na retirada de compostos que conferem resistência ao apodrecimento. As madeiras de candeia (Vanillosmopsis erythropappa), cerejeira (Amburana cearensis), jacarandá-caviúna (Machaerium scleroxylon) e de eucaliptos (Corymbia citriodora e Eucalyptus gummifera) também apresentaram elevada resistência natural, em função da baixa perda de massa ocorrida, quando expostas ao fungo G. trabeum. Essas madeiras, quando totalmente extraÃdas, apresentaram elevados valores de perda de massa. No que diz respeito ao material extraÃdo por diferentes solventes de forma isolada, observou-se, na candeia, que o solvente mais eficiente na retirada de substâncias que conferem resistência ao apodrecimento foi o diclorometano. Com relação ao cedro, o mais eficiente foi o metanol. Na cerejeira, por meio da mistura de etanol/tolueno retiraram-se mais substâncias, ao passo que no jacarandá-caviúna foi o metanol. Nas madeiras de eucaliptos, o metanol foi mais eficiente na retirada de componentes tóxicos ao fungo utilizado neste estudo, devendo destacar ainda, no E. gummifera, a eficiência da água quente na retirada de tais compostos. No C. citriodora, os valores de perda de massa, em razão das extrações em água fria, em água quente, em diclorometano e ao natural (não-extraÃda), foram muito baixos.
Resumo:
O presente trabalho teve como objetivo avaliar o efeito da extração da madeira de seis espécies, quatro nativas (candeia, cedro, cerejeira e jacarandá-caviúna) e duas exóticas (E. citriodora e E. gumifera), em diferentes solventes, na resistência ao apodrecimento causado pelo fungo da podridão-parda Gloeophyllum trabeum. O material foi ensaiado na forma de serragem, em face da maior facilidade para os procedimentos de extração. Dentre os resultados, pode-se destacar a baixa perda de massa ocorrida na madeira de cedro (Cedrela fissilis), evidenciando sua elevada resistência natural ao fungo testado e, ainda, à incapacidade dos solventes utilizados na retirada de compostos que conferem resistência ao apodrecimento. As madeiras de candeia (Vanillosmopsis erythropappa), cerejeira (Amburana cearensis), jacarandá-caviúna (Machaerium scleroxylon) e de eucaliptos (Corymbia citriodora e Eucalyptus gummifera) também apresentaram elevada resistência natural, em função da baixa perda de massa ocorrida, quando expostas ao fungo G. trabeum. Essas madeiras, quando totalmente extraÃdas, apresentaram elevados valores de perda de massa. No que diz respeito ao material extraÃdo por diferentes solventes de forma isolada, observou-se, na candeia, que o solvente mais eficiente na retirada de substâncias que conferem resistência ao apodrecimento foi o diclorometano. Com relação ao cedro, o mais eficiente foi o metanol. Na cerejeira, por meio da mistura de etanol/tolueno retiraram-se mais substâncias, ao passo que no jacarandá-caviúna foi o metanol. Nas madeiras de eucaliptos, o metanol foi mais eficiente na retirada de componentes tóxicos ao fungo utilizado neste estudo, devendo destacar ainda, no E. gummifera, a eficiência da água quente na retirada de tais compostos. No C. citriodora, os valores de perda de massa, em razão das extrações em água fria, em água quente, em diclorometano e ao natural (não-extraÃda), foram muito baixos.
Resumo:
Fungi that cause brown rot of wood are essential biomass recyclers and also the principal agents of decay in wooden structures, but the extracellular mechanisms by which they degrade lignocellulose remain unknown. To test the hypothesis that brown-rot fungi use extracellular free radical oxidants as biodegradative tools, Gloeophyllum trabeum was examined for its ability to depolymerize an environmentally recalcitrant polyether, poly(ethylene oxide) (PEO), that cannot penetrate cell membranes. Analyses of degraded PEOs by gel permeation chromatography showed that the fungus cleaved PEO rapidly by an endo route. 13C NMR analyses of unlabeled and perdeuterated PEOs recovered from G. trabeum cultures showed that a major route for depolymerization was oxidative C—C bond cleavage, a reaction diagnostic for hydrogen abstraction from a PEO methylene group by a radical oxidant. Fenton reagent (Fe(II)/H2O2) oxidized PEO by the same route in vitro and therefore might account for PEO biodegradation if it is produced by the fungus, but the data do not rule out involvement of less reactive radicals. The reactivity and extrahyphal location of this PEO-degrading system suggest that its natural function is to participate in the brown rot of wood and that it may enable brown-rot fungi to degrade recalcitrant organopollutants.
Resumo:
This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore size, while the smaller nanoparticle underwent faster self-assembly to form more compact 3D scaffolds with smaller porosity but more stable structure. Controlled release studies confirmed the ability of governing simultaneous release of different model drugs with independent release rate from a same scaffold. Cytotoxicity tests showed that all synthesized peptides, copolymers and peptide-copolymer conjugates were biocompatible with SW-620 cell lines and NIH3T3 cell lines. This new type of self-assembled scaffolds combined the advantages of peptide nanofibers and versatile controlled release of polymeric nanoparticles to achieve simultaneous multi-drug loading and controlled release of each drug, uniform distribution and flexibility of hydrogel scaffolds. The investigations in second part were first to design and synthesize organic biocide-loaded nanoparticles for low-leaching wood preservation using a cost-effective one-pot method to synthesize amphiphilic chitosan-g-PMMA nanoparticles loading with ~25-28 wt.% of the fungicide tebuconazole with particle size of ~100 nm diameter by FESEM. FESEM analysis confirmed efficient penetration of nanoparticles throughout the treated wooden stake with dimension of 19 × 19 × 455 mm^3. Leaching studies showed that biocide introduced into sapwood via nanoparticles leached only ~9% compared with the amount leached from tebuconazole solution-treated control, while soil jar tests showed that the nanoparticle-treated wood blocks were effectively protected from biological decay tested against G. trabeum, a brown rot fungus. Copper oxide nanoparticles with and without polymer stabilizers were also investigated to use as inorganic wood preservatives to clarify the factor affecting copper leaching from treated wood. Copper oxide nanoparticles with uniform diameters of ~10 nm and ~50 nm were prepared, and the leachates from southern pine sapwood treated with these nanoparticles were analyzed. It was found by TEM and EDS analysis that significant numbers of nanoparticles leached from the treated wood. The 50 nm nanoparticles leached slightly less than a soluble copper salt control, but 10 nm nanoparticles leached substantially more than the control. The effect of polymer stabilizers on nanoparticle leaching was also investigated. Results showed that polymer stabilizers increased leaching. The trends showed that nanoparticle size was a major factor in copper leaching.
Resumo:
G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75(NTR) and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Both groups treated with G-CSF showed increased p75(NTR) and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. The reduction in p75(NTR) and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF.
Resumo:
G-quadruplexes are secondary structures present in DNA and RNA molecules, which are formed by stacking of G-quartets (i.e., interaction of four guanines (G-tracts) bounded by Hoogsteen hydrogen bonding). Human PAX9 intron 1 has a putative G-quadruplex-forming region located near exon 1, which is present in all known sequenced placental mammals. Using circular dichroism (CD) analysis and CD melting, we showed that these sequences are able to form highly stable quadruplex structures. Due to the proximity of the quadruplex structure to exon-intron boundary, we used a validated double-reporter splicing assay and qPCR to analyze its role on splicing efficiency. The human quadruplex was shown to have a key role on splicing efficiency of PAX9 intron 1, as a mutation that abolished quadruplex formation decreased dramatically the splicing efficiency of human PAX9 intron 1. The less stable, rat quadruplex had a less efficient splicing when compared to human sequences. Additionally, the treatment with 360A, a strong ligand that stabilizes quadruplex structures, further increased splicing efficiency of human PAX9 intron 1. Altogether, these results provide evidences that G-quadruplex structures are involved in splicing efficiency of PAX9 intron 1.
Resumo:
Uma análise da distribuição geográfica de Schefflera no Brasil extra-amazônico foi realizada com base em mapas atualizados plotando as ocorrências conhecidas das 26 espécies do gênero encontradas nessa grande área: S. angustissima (Marchal) Frodin, S. aurata Fiaschi, S. botumirimensis Fiaschi & Pirani, S. burchellii (Seem.) Frodin & Fiaschi, S. calva (Cham.) Frodin & Fiaschi, S. capixaba Fiaschi, S. cephalantha (Harms) Frodin, S. cordata (Taub.) Frodin & Fiaschi, S. distractiflora (Harms) Frodin, S. fruticosa Fiaschi & Pirani, S. gardneri (Seem.) Frodin & Fiaschi, S. glaziovii (Taub.) Frodin & Fiaschi, S. grandigemma Fiaschi, S. kollmannii Fiaschi, S. longipetiolata (Pohl ex DC.) Frodin & Fiaschi, S. lucumoides (Decne. & Planch. ex Marchal) Frodin & Fiaschi, S. macrocarpa (Cham. & Schltdl.) Frodin, S. malmei (Harms) Frodin, S. morototoni (Aubl.) Maguire, Steyermark & Frodin, S. racemifera Fiaschi & Frodin, S. ruschiana Fiaschi & Pirani, S. selloi (Marchal) Frodin & Fiaschi, S. succinea Frodin & Fiaschi, S. villosissima Fiaschi & Pirani, S. vinosa (Cham. & Schltdl.) Frodin & Fiaschi e S. aff. varisiana Frodin. Dois centros de endemismo associados com áreas de altitude elevada foram reconhecidos: Cadeia do Espinhaço em Minas Gerais e florestas montanas do Estado do EspÃrito Santo. Os padrões de distribuição geográfica ilustrados são discutidos com base em dados obtidos para outros grupos de angiospermas e em estudos fitogeográficos das principais fitocórias do Brasil extra-amazônico. São apresentadas também hipóteses acerca de prováveis relações filogenéticas entre alguns táxons, visando à busca de possÃveis correlações entre estas e a biogeografia do grupo.
Resumo:
The endophyte Guignardia mangiferae is closely related to G. citricarpa, the causal agent of citrus black spot; for many years these species had been confused with each other. The development of molecular analytical methods has allowed differentiation of the pathogen G. citricarpa from the endophyte G. mangiferae, but the physiological traits associated with pathogenicity were not described. We examined genetic and enzymatic characteristics of Guignardia spp strains; G. citricarpa produces significantly greater amounts of amylases, endoglucanases and pectinases, compared to G. mangiferae, suggesting that these enzymes could be key in the development of citrus black spot. Principal component analysis revealed pectinase production as the main enzymatic characteristic that distinguishes these Guignardia species. We quantified the activities of pectin lyase, pectin methylesterase and endopolygalacturonase; G. citricarpa and G. mangiferae were found to have significantly different pectin lyase and endopolygalacturonase activities. The pathogen G. citricarpa is more effective in pectin degradation. We concluded that there are significant physiological differences between the species G. citricarpa and G. mangiferae that could be associated with differences in pathogenicity for citrus plants.
Resumo:
Aims: The relationship between variants in SLCO1B1 and SLCO2B1 genes and lipid-lowering response to atorvastatin was investigated. Material and Methods: One-hundred-thirty-six unrelated individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). They were genotyped with a panel of ancestry informative markers for individual African component of ancestry (ACA) estimation by SNaPshot (R) and SLCO1B1 (c.388A>G, c.463C>A and c.521T>C) and SLCO2B1 (-71T>C) gene polymorphisms were identified by TaqMan (R) Real-time PCR. Results: Subjects carrying SLCO1B1 c.388GG genotype exhibited significantly high low-density lipoprotein (LDL) cholesterol reduction relative to c.388AA+c.388AG carriers (41 vs. 37%, p = 0.034). Haplotype analysis revealed that homozygous of SLCO1B1*15 (c.521C and c.388G) variant had similar response to statin relative to heterozygous and non-carriers. A multivariate logistic regression analysis confirmed that c.388GG genotype was associated with higher LDL cholesterol reduction in the study population (OR: 3.2, CI95%: 1.3-8.0, p < 0.05). Conclusion: SLCO1B1 c.388A>G polymorphism causes significant increase in atorvastatin response and may be an important marker for predicting efficacy of lipid-lowering therapy.
Resumo:
Background: Celery (Apium graveolens) represents a relevant allergen source that can elicit severe reactions in the adult population. To investigate the sensitization prevalence and cross-reactivity of Api g 2 from celery stalks in a Mediterranean population and in a mouse model. Methodology: 786 non-randomized subjects from Italy were screened for IgE reactivity to rApi g 2, rArt v 3 (mugwort pollen LTP) and nPru p 3 (peach LTP) using an allergen microarray. Clinical data of 32 selected patients with reactivity to LTP under investigation were evaluated. Specific IgE titers and cross-inhibitions were performed in ELISA and allergen microarray. Balb/c mice were immunized with purified LTPs; IgG titers were determined in ELISA and mediator release was examined using RBL-2H3 cells. Simulated endolysosomal digestion was performed using microsomes obtained from human DCs. Results: IgE testing showed a sensitization prevalence of 25.6% to Api g 2, 18.6% to Art v 3, and 28.6% to Pru p 3 and frequent co-sensitization and correlating IgE-reactivity was observed. 10/32 patients suffering from LTP-related allergy reported symptoms upon consumption of celery stalks which mainly presented as OAS. Considerable IgE cross-reactivity was observed between Api g 2, Art v 3, and Pru p 3 with varying inhibition degrees of individual patients' sera. Simulating LTP mono-sensitization in a mouse model showed development of more congruent antibody specificities between Api g 2 and Art v 3. Notably, biologically relevant murine IgE cross-reactivity was restricted to the latter and diverse from Pru p 3 epitopes. Endolysosomal processing of LTP showed generation of similar clusters, which presumably represent T-cell peptides. Conclusions: Api g 2 represents a relevant celery stalk allergen in the LTP-sensitized population. The molecule displays common B cell epitopes and endolysosomal peptides that encompass T cell epitopes with pollen and plant-food derived LTP.
Resumo:
About 95% of HTLV-1 infected patients remain asymptomatic throughout life, and the risk factors associated with the development of related diseases, such as HAM/TSP and ATL, are not fully understood. The human leukocyte antigen-G molecule (HLA-G), a nonclassical HLA class I molecule encoded by MHC, is expressed in several pathological conditions, including viral infection, and is related to immunosuppressive effects that allow the virus-infected cells to escape the antiviral defense of the host. The 14-bp insertion/deletion polymorphism of exon 8 HLA-G gene influences the stability of the transcripts and could be related to HTLV-1-infected cell protection and to the increase of proviral load. The present study analyzed by conventional PCR the 14-bp insertion/deletion polymorphism of exon 8 HLA-G gene in 150 unrelated healthy subjects, 82 HTLV-1 infected patients with symptoms (33 ATL and 49 HAM), and 56 asymptomatic HTLV-1 infected patients (HAC). In addition, the proviral load was determined by quantitative real-time PCR in all infected groups and correlated with 14-bp insertion/deletion genotypes. The heterozygote genotype frequencies were significantly higher in HAM, in the symptomatic group, and in infected patients compared to control (p < 0.05). The proviral load was higher in the symptomatic group than the HAC group (p < 0.0005). The comparison of proviral load and genotypes showed that -14-bp/-14-bp genotype had a higher proviral load than +14-bp/-14-bp and +14-bp/+14-bp genotypes. Although HLA-G 14-bp polymorphism does not appear to be associated