301 resultados para Géométrie kählérienne généralisée


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse concerne le problème de trouver une notion naturelle de «courbure scalaire» en géométrie kählérienne généralisée. L'approche utilisée consiste à calculer l'application moment pour l'action du groupe des difféomorphismes hamiltoniens sur l'espace des structures kählériennes généralisées de type symplectique. En effet, il est bien connu que l'application moment pour la restriction de cette action aux structures kählériennes s'identifie à la courbure scalaire riemannienne. On se limite à une certaine classe de structure kählériennes généralisées sur les variétés toriques notée $DGK_{\omega}^{\mathbb{T}}(M)$ que l'on reconnaît comme étant classifiées par la donnée d'une matrice antisymétrique $C$ et d'une fonction réelle strictement convexe $\tau$ (ayant un comportement adéquat au voisinage de la frontière du polytope moment). Ce point de vue rend évident le fait que toute structure kählérienne torique peut être déformée en un élément non kählérien de $DGK_{\omega}^{\mathbb{T}}(M)$, et on note que cette déformation à lieu le long d'une des classes que R. Goto a démontré comme étant libre d'obstruction. On identifie des conditions suffisantes sur une paire $(\tau,C)$ pour qu'elle donne lieu à un élément de $DGK_{\omega}^{\mathbb{T}}(M)$ et on montre qu'en dimension 4, ces conditions sont également nécessaires. Suivant l'adage «l'application moment est la courbure» mentionné ci-haut, des formules pour des notions de «courbure scalaire hermitienne généralisée» et de «courbure scalaire riemannienne généralisée» (en dimension 4) sont obtenues en termes de la fonction $\tau$. Enfin, une expression de la courbure scalaire riemannienne généralisée en termes de la structure bihermitienne sous-jacente est dégagée en dimension 4. Lorsque comparée avec le résultat des physiciens Coimbra et al., notre formule suggère un choix canonique pour le dilaton de leur théorie.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalogue de l'abbaye de Corbie (éd. d'E. Coyecque, Cat des mss des bibliothèques de France, XIX, p.XI-XLVIII) XIe s.: n°38 ?; XIIe s.: n°77, 87 ?; 1621: n°294 Ex-libris : f.1 : « ex libris S. Petri Corbeiensis » ; — « Sti Germani a Pratis »