954 resultados para Génération de variables aléatoires
Resumo:
clRNG et clProbdist sont deux interfaces de programmation (APIs) que nous avons développées pour la génération de nombres aléatoires uniformes et non uniformes sur des dispositifs de calculs parallèles en utilisant l’environnement OpenCL. La première interface permet de créer au niveau d’un ordinateur central (hôte) des objets de type stream considérés comme des générateurs virtuels parallèles qui peuvent être utilisés aussi bien sur l’hôte que sur les dispositifs parallèles (unités de traitement graphique, CPU multinoyaux, etc.) pour la génération de séquences de nombres aléatoires. La seconde interface permet aussi de générer au niveau de ces unités des variables aléatoires selon différentes lois de probabilité continues et discrètes. Dans ce mémoire, nous allons rappeler des notions de base sur les générateurs de nombres aléatoires, décrire les systèmes hétérogènes ainsi que les techniques de génération parallèle de nombres aléatoires. Nous présenterons aussi les différents modèles composant l’architecture de l’environnement OpenCL et détaillerons les structures des APIs développées. Nous distinguons pour clRNG les fonctions qui permettent la création des streams, les fonctions qui génèrent les variables aléatoires uniformes ainsi que celles qui manipulent les états des streams. clProbDist contient les fonctions de génération de variables aléatoires non uniformes selon la technique d’inversion ainsi que les fonctions qui permettent de retourner différentes statistiques des lois de distribution implémentées. Nous évaluerons ces interfaces de programmation avec deux simulations qui implémentent un exemple simplifié d’un modèle d’inventaire et un exemple d’une option financière. Enfin, nous fournirons les résultats d’expérimentation sur les performances des générateurs implémentés.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Les fichiers qui accompagnent mon document ont été réalisés avec le logiciel Latex et les simulations ont été réalisés par Splus(R).
Resumo:
Le travail d'un(e) expert(e) en science forensique exige que ce dernier (cette dernière) prenne une série de décisions. Ces décisions sont difficiles parce qu'elles doivent être prises dans l'inévitable présence d'incertitude, dans le contexte unique des circonstances qui entourent la décision, et, parfois, parce qu'elles sont complexes suite à de nombreuse variables aléatoires et dépendantes les unes des autres. Etant donné que ces décisions peuvent aboutir à des conséquences sérieuses dans l'administration de la justice, la prise de décisions en science forensique devrait être soutenue par un cadre robuste qui fait des inférences en présence d'incertitudes et des décisions sur la base de ces inférences. L'objectif de cette thèse est de répondre à ce besoin en présentant un cadre théorique pour faire des choix rationnels dans des problèmes de décisions rencontrés par les experts dans un laboratoire de science forensique. L'inférence et la théorie de la décision bayésienne satisfont les conditions nécessaires pour un tel cadre théorique. Pour atteindre son objectif, cette thèse consiste de trois propositions, recommandant l'utilisation (1) de la théorie de la décision, (2) des réseaux bayésiens, et (3) des réseaux bayésiens de décision pour gérer des problèmes d'inférence et de décision forensiques. Les résultats présentent un cadre uniforme et cohérent pour faire des inférences et des décisions en science forensique qui utilise les concepts théoriques ci-dessus. Ils décrivent comment organiser chaque type de problème en le décomposant dans ses différents éléments, et comment trouver le meilleur plan d'action en faisant la distinction entre des problèmes de décision en une étape et des problèmes de décision en deux étapes et en y appliquant le principe de la maximisation de l'utilité espérée. Pour illustrer l'application de ce cadre à des problèmes rencontrés par les experts dans un laboratoire de science forensique, des études de cas théoriques appliquent la théorie de la décision, les réseaux bayésiens et les réseaux bayésiens de décision à une sélection de différents types de problèmes d'inférence et de décision impliquant différentes catégories de traces. Deux études du problème des deux traces illustrent comment la construction de réseaux bayésiens permet de gérer des problèmes d'inférence complexes, et ainsi surmonter l'obstacle de la complexité qui peut être présent dans des problèmes de décision. Trois études-une sur ce qu'il faut conclure d'une recherche dans une banque de données qui fournit exactement une correspondance, une sur quel génotype il faut rechercher dans une banque de données sur la base des observations faites sur des résultats de profilage d'ADN, et une sur s'il faut soumettre une trace digitale à un processus qui compare la trace avec des empreintes de sources potentielles-expliquent l'application de la théorie de la décision et des réseaux bayésiens de décision à chacune de ces décisions. Les résultats des études des cas théoriques soutiennent les trois propositions avancées dans cette thèse. Ainsi, cette thèse présente un cadre uniforme pour organiser et trouver le plan d'action le plus rationnel dans des problèmes de décisions rencontrés par les experts dans un laboratoire de science forensique. Le cadre proposé est un outil interactif et exploratoire qui permet de mieux comprendre un problème de décision afin que cette compréhension puisse aboutir à des choix qui sont mieux informés. - Forensic science casework involves making a sériés of choices. The difficulty in making these choices lies in the inévitable presence of uncertainty, the unique context of circumstances surrounding each décision and, in some cases, the complexity due to numerous, interrelated random variables. Given that these décisions can lead to serious conséquences in the admin-istration of justice, forensic décision making should be supported by a robust framework that makes inferences under uncertainty and décisions based on these inferences. The objective of this thesis is to respond to this need by presenting a framework for making rational choices in décision problems encountered by scientists in forensic science laboratories. Bayesian inference and décision theory meets the requirements for such a framework. To attain its objective, this thesis consists of three propositions, advocating the use of (1) décision theory, (2) Bayesian networks, and (3) influence diagrams for handling forensic inference and décision problems. The results present a uniform and coherent framework for making inferences and décisions in forensic science using the above theoretical concepts. They describe how to organize each type of problem by breaking it down into its différent elements, and how to find the most rational course of action by distinguishing between one-stage and two-stage décision problems and applying the principle of expected utility maximization. To illustrate the framework's application to the problems encountered by scientists in forensic science laboratories, theoretical case studies apply décision theory, Bayesian net-works and influence diagrams to a selection of différent types of inference and décision problems dealing with différent catégories of trace evidence. Two studies of the two-trace problem illustrate how the construction of Bayesian networks can handle complex inference problems, and thus overcome the hurdle of complexity that can be present in décision prob-lems. Three studies-one on what to conclude when a database search provides exactly one hit, one on what genotype to search for in a database based on the observations made on DNA typing results, and one on whether to submit a fingermark to the process of comparing it with prints of its potential sources-explain the application of décision theory and influ¬ence diagrams to each of these décisions. The results of the theoretical case studies support the thesis's three propositions. Hence, this thesis présents a uniform framework for organizing and finding the most rational course of action in décision problems encountered by scientists in forensic science laboratories. The proposed framework is an interactive and exploratory tool for better understanding a décision problem so that this understanding may lead to better informed choices.
Resumo:
Les modèles de séries chronologiques avec variances conditionnellement hétéroscédastiques sont devenus quasi incontournables afin de modéliser les séries chronologiques dans le contexte des données financières. Dans beaucoup d'applications, vérifier l'existence d'une relation entre deux séries chronologiques représente un enjeu important. Dans ce mémoire, nous généralisons dans plusieurs directions et dans un cadre multivarié, la procédure dévéloppée par Cheung et Ng (1996) conçue pour examiner la causalité en variance dans le cas de deux séries univariées. Reposant sur le travail de El Himdi et Roy (1997) et Duchesne (2004), nous proposons un test basé sur les matrices de corrélation croisée des résidus standardisés carrés et des produits croisés de ces résidus. Sous l'hypothèse nulle de l'absence de causalité en variance, nous établissons que les statistiques de test convergent en distribution vers des variables aléatoires khi-carrées. Dans une deuxième approche, nous définissons comme dans Ling et Li (1997) une transformation des résidus pour chaque série résiduelle vectorielle. Les statistiques de test sont construites à partir des corrélations croisées de ces résidus transformés. Dans les deux approches, des statistiques de test pour les délais individuels sont proposées ainsi que des tests de type portemanteau. Cette méthodologie est également utilisée pour déterminer la direction de la causalité en variance. Les résultats de simulation montrent que les tests proposés offrent des propriétés empiriques satisfaisantes. Une application avec des données réelles est également présentée afin d'illustrer les méthodes
Resumo:
La tâche de maintenance ainsi que la compréhension des programmes orientés objet (OO) deviennent de plus en plus coûteuses. L’analyse des liens de dépendance peut être une solution pour faciliter ces tâches d’ingénierie. Cependant, analyser les liens de dépendance est une tâche à la fois importante et difficile. Nous proposons une approche pour l'étude des liens de dépendance internes pour des programmes OO, dans un cadre probabiliste, où les entrées du programme peuvent être modélisées comme un vecteur aléatoire, ou comme une chaîne de Markov. Dans ce cadre, les métriques de couplage deviennent des variables aléatoires dont les distributions de probabilité peuvent être étudiées en utilisant les techniques de simulation Monte-Carlo. Les distributions obtenues constituent un point d’entrée pour comprendre les liens de dépendance internes entre les éléments du programme, ainsi que leur comportement général. Ce travail est valable dans le cas où les valeurs prises par la métrique dépendent des entrées du programme et que ces entrées ne sont pas fixées à priori. Nous illustrons notre approche par deux études de cas.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.
Resumo:
Les copulas archimédiennes hiérarchiques ont récemment gagné en intérêt puisqu’elles généralisent la famille de copules archimédiennes, car elles introduisent une asymétrie partielle. Des algorithmes d’échantillonnages et des méthodes ont largement été développés pour de telles copules. Néanmoins, concernant l’estimation par maximum de vraisemblance et les tests d’adéquations, il est important d’avoir à disposition la densité de ces variables aléatoires. Ce travail remplie ce manque. Après une courte introduction aux copules et aux copules archimédiennes hiérarchiques, une équation générale sur les dérivées des noeuds et générateurs internes apparaissant dans la densité des copules archimédiennes hiérarchique. sera dérivée. Il en suit une formule tractable pour la densité des copules archimédiennes hiérarchiques. Des exemples incluant les familles archimédiennes usuelles ainsi que leur transformations sont présentés. De plus, une méthode numérique efficiente pour évaluer le logarithme des densités est présentée.
Resumo:
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma.
Resumo:
Ce mémoire porte sur l’étude des maxima de champs gaussiens. Plus précisément, l’étude portera sur la convergence en loi, la convergence du premier ordre et la convergence du deuxième ordre du maximum d’une collection de variables aléatoires gaussiennes. Les modèles de champs gaussiens présentés sont le modèle i.i.d., le modèle hiérarchique et le champ libre gaussien. Ces champs gaussiens diffèrent par le degré de corrélation entre les variables aléatoires. Le résultat principal de ce mémoire sera que la convergence en probabilité du premier ordre du maximum est la même pour les trois modèles. Quelques résultats de simulations seront présentés afin de corroborer les résultats théoriques obtenus.
Resumo:
Nous étudions la gestion de centres d'appels multi-compétences, ayant plusieurs types d'appels et groupes d'agents. Un centre d'appels est un système de files d'attente très complexe, où il faut généralement utiliser un simulateur pour évaluer ses performances. Tout d'abord, nous développons un simulateur de centres d'appels basé sur la simulation d'une chaîne de Markov en temps continu (CMTC), qui est plus rapide que la simulation conventionnelle par événements discrets. À l'aide d'une méthode d'uniformisation de la CMTC, le simulateur simule la chaîne de Markov en temps discret imbriquée de la CMTC. Nous proposons des stratégies pour utiliser efficacement ce simulateur dans l'optimisation de l'affectation des agents. En particulier, nous étudions l'utilisation des variables aléatoires communes. Deuxièmement, nous optimisons les horaires des agents sur plusieurs périodes en proposant un algorithme basé sur des coupes de sous-gradients et la simulation. Ce problème est généralement trop grand pour être optimisé par la programmation en nombres entiers. Alors, nous relaxons l'intégralité des variables et nous proposons des méthodes pour arrondir les solutions. Nous présentons une recherche locale pour améliorer la solution finale. Ensuite, nous étudions l'optimisation du routage des appels aux agents. Nous proposons une nouvelle politique de routage basé sur des poids, les temps d'attente des appels, et les temps d'inoccupation des agents ou le nombre d'agents libres. Nous développons un algorithme génétique modifié pour optimiser les paramètres de routage. Au lieu d'effectuer des mutations ou des croisements, cet algorithme optimise les paramètres des lois de probabilité qui génèrent la population de solutions. Par la suite, nous développons un algorithme d'affectation des agents basé sur l'agrégation, la théorie des files d'attente et la probabilité de délai. Cet algorithme heuristique est rapide, car il n'emploie pas la simulation. La contrainte sur le niveau de service est convertie en une contrainte sur la probabilité de délai. Par après, nous proposons une variante d'un modèle de CMTC basé sur le temps d'attente du client à la tête de la file. Et finalement, nous présentons une extension d'un algorithme de coupe pour l'optimisation stochastique avec recours de l'affectation des agents dans un centre d'appels multi-compétences.
Resumo:
Ce mémoire est consacré à l'étude du modèle statistique bivarié duquel sont issues deux variables aléatoires conditionnellement indépendantes de loi de Poisson, dont les taux ne sont pas nécessairement égaux. Tout au long de ce mémoire, l'emphase est mise sur le développement d'un cadre bayésien au problème d'estimation paramétrique pour un tel modèle. Deux thèmes principaux y sont abordés : l'inférence statistique du rapport des deux paramètres d'intensité poissonniens et les densités prédictives. Ces problèmes surviennent notamment dans le contexte d'estimation de l'efficacité d'un vaccin développé par Laurent (Laurent, 2012) de même que Laurent et Legrand (Laurent et Legrand, 2012), ou encore, par celui d'estimation de l'efficacité d'un traitement contre le cancer par Lindley (Lindley, 2002). Alors que, dans ces articles, aucune contrainte paramétrique n'est imposée sur le rapport des deux taux poissonniens, une partie du mémoire abordera également ces thèmes lorsqu'il y a une contrainte restreignant le domaine du rapport sur l'intervalle $[0,1]$. Il sera alors possible d'établir des liens avec un article sur les files d'attente d'Armero et Bayarri (Armero et Bayarri, 1994).
Resumo:
Les problèmes de conception de réseaux ont reçu un intérêt particulier et ont été largement étudiés de par leurs nombreuses applications dans différents domaines, tels que les transports et les télécommunications. Nous nous intéressons dans ce mémoire au problème de conception de réseaux avec coûts d’ajout de capacité. Il s’agit d’installer un ensemble d’équipements sur un réseau en vue de satisfaire la demande, tout en respectant les contraintes de capacité, chaque arc pouvant admettre plusieurs équipements. L’objectif est de minimiser les coûts variables de transport des produits et les coûts fixes d’installation ou d’augmentation de capacité des équipements. La méthode que nous envisageons pour résoudre ce problème est basée sur les techniques utilisées en programmation linéaire en nombres entiers, notamment celles de génération de colonnes et de coupes. Ces méthodes sont introduites dans un algorithme général de branch-and-bound basé sur la relaxation linéaire. Nous avons testé notre méthode sur quatre groupes d’instances de tailles différentes, et nous l’avons comparée à CPLEX, qui constitue un des meilleurs solveurs permettant de résoudre des problèmes d’optimisation, ainsi qu’à une méthode existante dans la littérature combinant des méthodes exactes et heuristiques. Notre méthode a été plus performante que ces deux méthodes, notamment pour les instances de très grandes tailles.
Resumo:
This is an ecological, analytical and retrospective study comprising the 645 municipalities in the State of São Paulo, the scope of which was to determine the relationship between socioeconomic, demographic variables and the model of care in relation to infant mortality rates in the period from 1998 to 2008. The ratio of average annual change for each indicator per stratum coverage was calculated. Infant mortality was analyzed according to the model for repeated measures over time, adjusted for the following correction variables: the city's population, proportion of Family Health Programs (PSFs) deployed, proportion of Growth Acceleration Programs (PACs) deployed, per capita GDP and SPSRI (São Paulo social responsibility index). The analysis was performed by generalized linear models, considering the gamma distribution. Multiple comparisons were performed with the likelihood ratio with chi-square approximate distribution, considering a significance level of 5%. There was a decrease in infant mortality over the years (p < 0.05), with no significant difference from 2004 to 2008 (p > 0.05). The proportion of PSFs deployed (p < 0.0001) and per capita GDP (p < 0.0001) were significant in the model. The decline of infant mortality in this period was influenced by the growth of per capita GDP and PSFs.