971 resultados para Fuzzy theory
Resumo:
Traditional methods do not actually measure peoples’ risk attitude naturally and precisely. Therefore, a fuzzy risk attitude classification method is developed. Since the prospect theory is usually considered as an effective model of decision making, the personalized parameters in prospect theory are firstly fuzzified to distinguish people with different risk attitudes, and then a fuzzy classification database schema is applied to calculate the exact value of risk value attitude and risk be- havior attitude. Finally, by applying a two-hierarchical clas- sification model, the precise value of synthetical risk attitude can be acquired.
Resumo:
We preserit a computational procedure to control art experimental chaotic system by applying the occasional proportional feedback (OPF) method. The method implementation uses the fuzzy theory to relate the variable correction to the necessary adjustment in the control parameter. As an application We control the chaotic attractors of the Chua circuit. We present file developed circuits and algorithms to implement this control in real time. To simplify the used procedure, we use it low resolution analog to digital converter compensated for a lowpass filter that facilitates similar applications to control other systems. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Spatial analysis and fuzzy classification techniques were used to estimate the spatial distributions of heavy metals in soil. The work was applied to soils in a coastal region that is characterized by intense urban occupation and large numbers of different industries. Concentrations of heavy metals were determined using geostatistical techniques and classes of risk were defined using fuzzy classification. The resulting prediction mappings identify the locations of high concentrations of Pb, Zn, Ni, and Cu in topsoils of the study area. The maps show that areas of high pollution of Ni and Cu are located at the northeast, where there is a predominance of industrial and agricultural activities; Pb and Zn also occur in high concentrations in the northeast, but the maps also show significant concentrations of Pb and Zn in other areas, mainly in the central and southeastern parts, where there are urban leisure activities and trade centers. Maps were also prepared showing levels of pollution risk. These maps show that (1) Cu presents a large pollution risk in the north-northwest, midwest, and southeast sectors, (2) Pb represents a moderate risk in most areas, (3) Zn generally exhibits low risk, and (4) Ni represents either low risk or no risk in the studied area. This study shows that combining geostatistics with fuzzy theory can provide results that offer insight into risk assessment for environmental pollution.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the application of fuzzy theory to support the decision of implementing energy efficiency program in sawmills operating in the processing of Pinustaeda and Pinuselliotii. The justification of using a system based on fuzzy theory for analysis of consumption and the specific factors involved, such is the diversity of rates / factors. With the fuzzy theory, we can build a reliable system for verifying actual energy efficiency. The indices and factors characteristic of industrial activity were measured and used as the basis for the fuzzy system. We developed a management system and technology. The system involves the management practices in energy efficiency, maintenance of plant and equipment and the presence of qualified staff. The technological system involves the power factor, load factor, the factor of demand and the specific consumption. The first response provides the possibility of increased energy efficiency and the second level of energy efficiency in the industry studied. With this tool, programs can be developed for energy conservation and energy efficiency in the industrial timber with wide application in this area that is as diverse as production processes. The same systems developed can be used in other industrial activities, provided they are used indices and characteristic features of the sectors involved.
Resumo:
This paper presents the application and use of a methodology based on fuzzy theory and simulates its use in intelligent control of a hybrid system for generating electricity, using solar energy, photovoltaic and wind. When using a fuzzy control system, it reached the point of maximum generation of energy, thus shifting all energy generated from the alternative sources-solar photovoltaic and wind, cargo and / or batteries when its use not immediately. The model uses three variables used for entry, which are: wind speed, solar radiation and loading the bank of batteries. For output variable has to choose which of the batteries of the battery bank is charged. For the simulations of this work is used MATLAB software. In this environment mathematical computational are analyzed and simulated all mathematical modeling, rules and other variables in the system described fuzzy. This model can be used in a system of control of hybrid systems for generating energy, providing the best use of energy sources, sun and wind, so we can extract the maximum energy possible these alternative sources without any prejudice to the environment.
Resumo:
The so called “Plural Uncertainty Model” is considered, in which statistical, maxmin, interval and Fuzzy model of uncertainty are embedded. For the last case external and internal contradictions of the theory are investigated and the modified definition of the Fuzzy Sets is proposed to overcome the troubles of the classical variant of Fuzzy Subsets by L. Zadeh. The general variants of logit- and probit- regression are the model of the modified Fuzzy Sets. It is possible to say about observations within the modification of the theory. The conception of the “situation” is proposed within modified Fuzzy Theory and the classifying problem is considered. The algorithm of the classification for the situation is proposed being the analogue of the statistical MLM(maximum likelihood method). The example related possible observing the distribution from the collection of distribution is considered.
Resumo:
O presente trabalho faz um enlace de teorias propostas por dois trabalhos: Transformação de valores crisp em valores fuzzy e construção de gráfico de controle fuzzy. O resultado desse enlace é um gráfico de controle fuzzy que foi aplicado em um processo de produção de iogurte, onde as variáveis analisadas foram: Cor, Aroma, Consistência, Sabor e Acidez. São características que dependem da percepção dos indivíduos, então a forma utilizada para coletar informações a respeito de tais característica foi a análise sensorial. Nas analises um grupo denominado de juízes, atribuía individualmente notas para cada amostra de iogurte em uma escala de 0 a 10. Esses valores crisp, notas atribuídas pelos juízes, foram então, transformados em valores fuzzy, na forma de número fuzzy triangular. Com os números fuzzy, foram construídos os gráficos de controle fuzzy de média e amplitude. Com os valores crisp foram construídos gráficos de controle de Shewhart para média e amplitude, já consolidados pela literatura. Por fim, os resultados encontrados nos gráficos tradicionais foram comparados aos encontrados nos gráficos de controle fuzzy. O que pode-se observar é que o gráfico de controle fuzzy, parece satisfazer de forma significativa a realidade do processo, pois na construção do número fuzzy é considerada a variabilidade do processo. Além disso, caracteriza o processo de produção em alguns níveis, onde nem sempre o processo estará totalmente em controle ou totalmente fora de controle. O que vai ao encontro da teoria fuzzy: se não é possível prever com exatidão determinados resultados é melhor ter uma margem de aceitação, o que implicará na redução de erros.