902 resultados para Fuzzy neural nets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the identification of complex dynamic systems using fuzzy neural networks, one of the main issues is the curse of dimensionality, which makes it difficult to retain a large number of system inputs or to consider a large number of fuzzy sets. Moreover, due to the correlations, not all possible network inputs or regression vectors in the network are necessary and adding them simply increases the model complexity and deteriorates the network generalisation performance. In this paper, the problem is solved by first proposing a fast algorithm for selection of network terms, and then introducing a refinement procedure to tackle the correlation issue. Simulation results show the efficacy of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origins of artificial neural networks are related to animal conditioning theory: both are forms of connectionist theory, which in turn derives from the empiricist philosophers' principle of association. The parallel between animal learning and neural nets suggests that interaction between them should benefit both sides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy-neural-network-based inference systems are well-known universal approximators which can produce linguistically interpretable results. Unfortunately, their dimensionality can be extremely high due to an excessive number of inputs and rules, which raises the need for overall structure optimization. In the literature, various input selection methods are available, but they are applied separately from rule selection, often without considering the fuzzy structure. This paper proposes an integrated framework to optimize the number of inputs and the number of rules simultaneously. First, a method is developed to select the most significant rules, along with a refinement stage to remove unnecessary correlations. An improved information criterion is then proposed to find an appropriate number of inputs and rules to include in the model, leading to a balanced tradeoff between interpretability and accuracy. Simulation results confirm the efficacy of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of reported learning methods for Takagi-Sugeno-Kang fuzzy neural models to date mainly focus on the improvement of their accuracy. However, one of the key design requirements in building an interpretable fuzzy model is that each obtained rule consequent must match well with the system local behaviour when all the rules are aggregated to produce the overall system output. This is one of the distinctive characteristics from black-box models such as neural networks. Therefore, how to find a desirable set of fuzzy partitions and, hence, to identify the corresponding consequent models which can be directly explained in terms of system behaviour presents a critical step in fuzzy neural modelling. In this paper, a new learning approach considering both nonlinear parameters in the rule premises and linear parameters in the rule consequents is proposed. Unlike the conventional two-stage optimization procedure widely practised in the field where the two sets of parameters are optimized separately, the consequent parameters are transformed into a dependent set on the premise parameters, thereby enabling the introduction of a new integrated gradient descent learning approach. A new Jacobian matrix is thus proposed and efficiently computed to achieve a more accurate approximation of the cost function by using the second-order Levenberg-Marquardt optimization method. Several other interpretability issues about the fuzzy neural model are also discussed and integrated into this new learning approach. Numerical examples are presented to illustrate the resultant structure of the fuzzy neural models and the effectiveness of the proposed new algorithm, and compared with the results from some well-known methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Portuguese northern forests are often and severely affected by wildfires during the Summer season. These occurrences significantly affect and negatively impact all ecosystems, namely soil, fauna and flora. In order to reduce the occurrences of natural wildfires, some measures to control the availability of fuel mass are regularly implemented. Those preventive actions concern mainly prescribed burnings and vegetation pruning. This work reports on the impact of a prescribed burning on several forest soil properties, namely pH, soil moisture, organic matter content and iron content, by monitoring the soil self-recovery capabilities during a one year span. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, which was kept intact from prescribed burnings during a period of four years. Soil samples were collected from five plots at three different layers (0–3, 3–6 and 6–18) 1 day before prescribed fire and at regular intervals after the prescribed fire. This paper presents an approach where Fuzzy Boolean Nets (FBN) and Fuzzy reasoning are used to extract qualitative knowledge regarding the effect of prescribed fire burning on soil properties. FBN were chosen due to the scarcity on available quantitative data. The results showed that soil properties were affected by prescribed burning practice and were unable to recover their initial values after one year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the modifications that occurred in some forest soil properties after a prescribed fire. The research focused on the alterations of soil pH, soil moisture and soil organic matter content during a two-year span, from 2008 to 2009. The study site is located in Anjos, Vieira do Minho municipality, a forest site that has suffered from recurrent wildfires for several decades. Furze (Ulex, sp.), broom (Cytisus, sp.), gorse (Chamaespartum tridentatum) and a very few disperse adult pine (Pinus sylvestris) are the predominant vegetation type in the study area. The average height of this shrub vegetation is around 1.5 m. The prescribed fire was conducted by the National Forestry Authority (AFN) in November 2008. Fuzzy Boolean Nets (FBN) were used to evaluate the alteration in soil parameters when compared with adjacent spots where: i) no fire occurrence was registered since 1998; ii) fire occurrence was registered in 2008; and iii) vegetation pruning by mechanical cut was done in Spring six months prior to the prescribed fire event. Results suggest that in the particular case of the studied site, Anjos, the observed soil properties alterations cannot be related with the prescribed fire.