895 resultados para Fuzzy decision support system
Resumo:
An intelligent system that emulates human decision behaviour based on visual data acquisition is proposed. The approach is useful in applications where images are used to supply information to specialists who will choose suitable actions. An artificial neural classifier aids a fuzzy decision support system to deal with uncertainty and imprecision present in available information. Advantages of both techniques are exploited complementarily. As an example, this method was applied in automatic focus checking and adjustment in video monitor manufacturing. Copyright © 2005 IFAC.
Resumo:
A decision support system (DSS) was implemented based on a fuzzy logic inference system (FIS) to provide assistance in dose alteration of Duodopa infusion in patients with advanced Parkinson’s disease, using data from motor state assessments and dosage. Three-tier architecture with an object oriented approach was used. The DSS has a web enabled graphical user interface that presents alerts indicating non optimal dosage and states, new recommendations, namely typical advice with typical dose and statistical measurements. One data set was used for design and tuning of the FIS and another data set was used for evaluating performance compared with actual given dose. Overall goodness-of-fit for the new patients (design data) was 0.65 and for the ongoing patients (evaluation data) 0.98. User evaluation is now ongoing. The system could work as an assistant to clinical staff for Duodopa treatment in advanced Parkinson’s disease.
Resumo:
This paper deals with a very important issue in any knowledge engineering discipline: the accurate representation and modelling of real life data and its processing by human experts. The work is applied to the GRiST Mental Health Risk Screening Tool for assessing risks associated with mental-health problems. The complexity of risk data and the wide variations in clinicians' expert opinions make it difficult to elicit representations of uncertainty that are an accurate and meaningful consensus. It requires integrating each expert's estimation of a continuous distribution of uncertainty across a range of values. This paper describes an algorithm that generates a consensual distribution at the same time as measuring the consistency of inputs. Hence it provides a measure of the confidence in the particular data item's risk contribution at the input stage and can help give an indication of the quality of subsequent risk predictions. © 2010 IEEE.
Resumo:
Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.
Resumo:
Uncertainty contributes a major part in the accuracy of a decision-making process while its inconsistency is always difficult to be solved by existing decision-making tools. Entropy has been proved to be useful to evaluate the inconsistency of uncertainty among different respondents. The study demonstrates an entropy-based financial decision support system called e-FDSS. This integrated system provides decision support to evaluate attributes (funding options and multiple risks) available in projects. Fuzzy logic theory is included in the system to deal with the qualitative aspect of these options and risks. An adaptive genetic algorithm (AGA) is also employed to solve the decision algorithm in the system in order to provide optimal and consistent rates to these attributes. Seven simplified and parallel projects from a Hong Kong construction small and medium enterprise (SME) were assessed to evaluate the system. The result shows that the system calculates risk adjusted discount rates (RADR) of projects in an objective way. These rates discount project cash flow impartially. Inconsistency of uncertainty is also successfully evaluated by the use of the entropy method. Finally, the system identifies the favourable funding options that are managed by a scheme called SME Loan Guarantee Scheme (SGS). Based on these results, resource allocation could then be optimized and the best time to start a new project could also be identified throughout the overall project life cycle.
Resumo:
The method of entropy has been useful in evaluating inconsistency on human judgments. This paper illustrates an entropy-based decision support system called e-FDSS to the solution of multicriterion risk and decision analysis in projects of construction small and medium enterprises (SMEs). It is optimized and solved by fuzzy logic, entropy, and genetic algorithms. A case study demonstrated the use of entropy in e-FDSS on analyzing multiple risk criteria in the predevelopment stage of SME projects. Survey data studying the degree of impact of selected project risk criteria on different projects were input into the system in order to evaluate the preidentified project risks in an impartial environment. Without taking into account the amount of uncertainty embedded in the evaluation process; the results showed that all decision vectors are indeed full of bias and the deviations of decisions are finally quantified providing a more objective decision and risk assessment profile to the stakeholders of projects in order to search and screen the most profitable projects.
Resumo:
The purpose of this work is to develop a web based decision support system, based onfuzzy logic, to assess the motor state of Parkinson patients on their performance in onscreenmotor tests in a test battery on a hand computer. A set of well defined rules, basedon an expert’s knowledge, were made to diagnose the current state of the patient. At theend of a period, an overall score is calculated which represents the overall state of thepatient during the period. Acceptability of the rules is based on the absolute differencebetween patient’s own assessment of his condition and the diagnosed state. Anyinconsistency can be tracked by highlighted as an alert in the system. Graphicalpresentation of data aims at enhanced analysis of patient’s state and performancemonitoring by the clinic staff. In general, the system is beneficial for the clinic staff,patients, project managers and researchers.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Due to the socio-economic inhomogeneity of communities in developing countries, the selection of sanitation systems is a complex task. To assist planners and communities in assessing the suitability of alternatives, the decision support system SANEX™ was developed. SANEX™ evaluates alternatives in two steps. First, Conjunctive Elimination, based on 20 mainly technical criteria, is used to screen feasible alternatives. Subsequently, a model derived from Multiattribute Utility Technique (MAUT) uses technical, socio-cultural and institutional criteria to compare the remaining alternatives with regard to their implementability and sustainability. This paper presents the SANEX™ algorithm, examples of its application in practice, and results obtained from field testing.
Resumo:
This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.
Resumo:
This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed Distributed Belief Revision Test-bed — DiBeRT; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
Geographic information systems give us the possibility to analyze, produce, and edit geographic information. Furthermore, these systems fall short on the analysis and support of complex spatial problems. Therefore, when a spatial problem, like land use management, requires a multi-criteria perspective, multi-criteria decision analysis is placed into spatial decision support systems. The analytic hierarchy process is one of many multi-criteria decision analysis methods that can be used to support these complex problems. Using its capabilities we try to develop a spatial decision support system, to help land use management. Land use management can undertake a broad spectrum of spatial decision problems. The developed decision support system had to accept as input, various formats and types of data, raster or vector format, and the vector could be polygon line or point type. The support system was designed to perform its analysis for the Zambezi river Valley in Mozambique, the study area. The possible solutions for the emerging problems had to cover the entire region. This required the system to process large sets of data, and constantly adjust to new problems’ needs. The developed decision support system, is able to process thousands of alternatives using the analytical hierarchy process, and produce an output suitability map for the problems faced.
Resumo:
Autor proof