984 resultados para Fuzzy Comparison


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global land cover maps play an important role in the understanding of the Earth's ecosystem dynamic. Several global land cover maps have been produced recently namely, Global Land Cover Share (GLC-Share) and GlobeLand30. These datasets are very useful sources of land cover information and potential users and producers are many times interested in comparing these datasets. However these global land cover maps are produced based on different techniques and using different classification schemes making their interoperability in a standardized way a challenge. The Environmental Information and Observation Network (EIONET) Action Group on Land Monitoring in Europe (EAGLE) concept was developed in order to translate the differences in the classification schemes into a standardized format which allows a comparison between class definitions. This is done by elaborating an EAGLE matrix for each classification scheme, where a bar code is assigned to each class definition that compose a certain land cover class. Ahlqvist (2005) developed an overlap metric to cope with semantic uncertainty of geographical concepts, providing this way a measure of how geographical concepts are more related to each other. In this paper, the comparison of global land cover datasets is done by translating each land cover legend into the EAGLE bar coding for the Land Cover Components of the EAGLE matrix. The bar coding values assigned to each class definition are transformed in a fuzzy function that is used to compute the overlap metric proposed by Ahlqvist (2005) and overlap matrices between land cover legends are elaborated. The overlap matrices allow the semantic comparison between the classification schemes of each global land cover map. The proposed methodology is tested on a case study where the overlap metric proposed by Ahlqvist (2005) is computed in the comparison of two global land cover maps for Continental Portugal. The study resulted with the overlap spatial distribution among the two global land cover maps, Globeland30 and GLC-Share. These results shows that Globeland30 product overlap with a degree of 77% with GLC-Share product in Continental Portugal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers. As each traction wheel control is independent, it's possible to obtain different speed values for each wheel. This process facilities the direction and drive changes. Two different strategies for speed velocity control were implemented; one works with PID, and the other with fuzzy logic. There were no changes in circuits and feedback control, except for the PIC microcontroller software. Comparing the two different speed control strategies the results were equivalent. However, in relation to the development and implementation of these strategies, the difficulties were bigger to implement the PID control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this paper, an adaptive neuro-fuzzy inference approach is proposed for short-term wind power forecasting. Results from a real-world case study are presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Numerical results are presented and conclusions are duly drawn. (C) 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the large number of characteristics, there is a need to extract the most relevant characteristicsfrom the input data, so that the amount of information lost in this way is minimal, and the classification realized with the projected data set is relevant with respect to the original data. In order to achieve this feature extraction, different statistical techniques, as well as the principal components analysis (PCA) may be used. This thesis describes an extension of principal components analysis (PCA) allowing the extraction ofa finite number of relevant features from high-dimensional fuzzy data and noisy data. PCA finds linear combinations of the original measurement variables that describe the significant variation in the data. The comparisonof the two proposed methods was produced by using postoperative patient data. Experiment results demonstrate the ability of using the proposed two methods in complex data. Fuzzy PCA was used in the classificationproblem. The classification was applied by using the similarity classifier algorithm where total similarity measures weights are optimized with differential evolution algorithm. This thesis presents the comparison of the classification results based on the obtained data from the fuzzy PCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extension of traditional data mining methods to time series has been effectively applied to a wide range of domains such as finance, econometrics, biology, security, and medicine. Many existing mining methods deal with the task of change points detection, but very few provide a flexible approach. Querying specific change points with linguistic variables is particularly useful in crime analysis, where intuitive, understandable, and appropriate detection of changes can significantly improve the allocation of resources for timely and concise operations. In this paper, we propose an on-line method for detecting and querying change points in crime-related time series with the use of a meaningful representation and a fuzzy inference system. Change points detection is based on a shape space representation, and linguistic terms describing geometric properties of the change points are used to express queries, offering the advantage of intuitiveness and flexibility. An empirical evaluation is first conducted on a crime data set to confirm the validity of the proposed method and then on a financial data set to test its general applicability. A comparison to a similar change-point detection algorithm and a sensitivity analysis are also conducted. Results show that the method is able to accurately detect change points at very low computational costs. More broadly, the detection of specific change points within time series of virtually any domain is made more intuitive and more understandable, even for experts not related to data mining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studies the properties and usability of operators called t-norms, t-conorms, uninorms, as well as many valued implications and equivalences. Into these operators, weights and a generalized mean are embedded for aggregation, and they are used for comparison tasks and for this reason they are referred to as comparison measures. The thesis illustrates how these operators can be weighted with a differential evolution and aggregated with a generalized mean, and the kinds of measures of comparison that can be achieved from this procedure. New operators suitable for comparison measures are suggested. These operators are combination measures based on the use of t-norms and t-conorms, the generalized 3_-uninorm and pseudo equivalence measures based on S-type implications. The empirical part of this thesis demonstrates how these new comparison measures work in the field of classification, for example, in the classification of medical data. The second application area is from the field of sports medicine and it represents an expert system for defining an athlete's aerobic and anaerobic thresholds. The core of this thesis offers definitions for comparison measures and illustrates that there is no actual difference in the results achieved in comparison tasks, by the use of comparison measures based on distance, versus comparison measures based on many valued logical structures. The approach has been highly practical in this thesis and all usage of the measures has been validated mainly by practical testing. In general, many different types of operators suitable for comparison tasks have been presented in fuzzy logic literature and there has been little or no experimental work with these operators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active queue management (AQM) policies are those policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. This paper proposes the adoption of a fuzzy proportional integral (FPI) controller as an active queue manager for Internet routers. The analytical design of the proposed FPI controller is carried out in analogy with a proportional integral (PI) controller, which recently has been proposed for AQM. A genetic algorithm is proposed for tuning of the FPI controller parameters with respect to optimal disturbance rejection. In the paper the FPI controller design metodology is described and the results of the comparison with random early detection (RED), tail drop, and PI controller are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Risk and uncertainty are, to say the least, poorly considered by most individuals involved in real estate analysis - in both development and investment appraisal. Surveyors continue to express 'uncertainty' about the value (risk) of using relatively objective methods of analysis to account for these factors. These methods attempt to identify the risk elements more explicitly. Conventionally this is done by deriving probability distributions for the uncontrolled variables in the system. A suggested 'new' way of "being able to express our uncertainty or slight vagueness about some of the qualitative judgements and not entirely certain data required in the course of the problem..." uses the application of fuzzy logic. This paper discusses and demonstrates the terminology and methodology of fuzzy analysis. In particular it attempts a comparison of the procedures with those used in 'conventional' risk analysis approaches and critically investigates whether a fuzzy approach offers an alternative to the use of probability based analysis for dealing with aspects of risk and uncertainty in real estate analysis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents a new way of control engineering. Dc motor speed controlled by three controllers PID, pole placement and Fuzzy controller and discusses the advantages and disadvantages of each controller for different conditions under loaded and unloaded scenarios using software Matlab. The brushless series wound Dc motor is very popular in industrial application and control systems because of the high torque density, high efficiency and small size. First suitable equations are developed for DC motor. PID controller is developed and tuned in order to get faster step response. The simulation results of PID controller provide very good results and the controller is further tuned in order to decrease its overshoot error which is common in PID controllers. Further it is purposed that in industrial environment these controllers are better than others controllers as PID controllers are easy to tuned and cheap. Pole placement controller is the best example of control engineering. An addition of integrator reduced the noise disturbances in pole placement controller and this makes it a good choice for industrial applications. The fuzzy controller is introduce with a DC chopper to make the DC motor speed control smooth and almost no steady state error is observed. Another advantage is achieved in fuzzy controller that the simulations of three different controllers are compared and concluded from the results that Fuzzy controller outperforms to PID controller in terms of steady state error and smooth step response. While Pole placement controller have no comparison in terms of controls because designer can change the step response according to nature of control systems, so this controller provide wide range of control over a system. Poles location change the step response in a sense that if poles are near to origin then step response of motor is fast. Finally a GUI of these three controllers are developed which allow the user to select any controller and change its parameters according to the situation.