912 resultados para Fuses. Recycling ceramic. Porcelain electrical


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power industry generates as waste ceramic bodies of electrical fuses that are discarded after use. The formulation of ceramic bodies for porcelain electrical insulators using waste from the bodies fuse allocation promotes environmentally appropriate, through the reuse of the material. This work evaluated the technical feasibility of using waste for use in electrical porcelains with formulations containing the residue, feldspar and kaolinite. The raw materials were processed through grinding and sieving to 200 mesh. The ceramic material obtained from the proposed formulations with 25%, 30%, 34% and 40% of the residue went through a vibratory mill for grinding and homogenization, and then were sieved at 325 mesh. The samples were shaped in a uniaxial press, with the application of 25 MPa and sintered at 1100° C, 1150°C, 1200°C, 1225°C and 1250°C, at levels of 20 and 45 minutes. Were also developed bodies of evidence with reference formulations obtained without residue, to establish a comparison on physical, mechanical and electrical. The tests were conducted and technology: linear shrinkage, porosity, water absorption, resistance to bending to three points, measuring insulation resistance electrical resistivity of the material, X-ray diffraction and X-ray fluorescence Waste characterizations pointed to the existence of two phases: mullite and quartz phases are of great importance in the microstructure of the ceramic and this fact reveals a possibility for reuse in electrical porcelains. The mullite is an important constituent because it is a phase that makes it possible to increase the mechanical strength in addition to the body allows the use at high temperatures. The use of ceramic bodies residue fuses, proved feasible for application in electrical porcelain and the most significant results were obtained by the formulations with 25% waste and sintering at 1200°C

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power industry generates as waste ceramic bodies of electrical fuses that are discarded after use. The formulation of ceramic bodies for porcelain electrical insulators using waste from the bodies fuse allocation promotes environmentally appropriate, through the reuse of the material. This work evaluated the technical feasibility of using waste for use in electrical porcelains with formulations containing the residue, feldspar and kaolinite. The raw materials were processed through grinding and sieving to 200 mesh. The ceramic material obtained from the proposed formulations with 25%, 30%, 34% and 40% of the residue went through a vibratory mill for grinding and homogenization, and then were sieved at 325 mesh. The samples were shaped in a uniaxial press, with the application of 25 MPa and sintered at 1100° C, 1150°C, 1200°C, 1225°C and 1250°C, at levels of 20 and 45 minutes. Were also developed bodies of evidence with reference formulations obtained without residue, to establish a comparison on physical, mechanical and electrical. The tests were conducted and technology: linear shrinkage, porosity, water absorption, resistance to bending to three points, measuring insulation resistance electrical resistivity of the material, X-ray diffraction and X-ray fluorescence Waste characterizations pointed to the existence of two phases: mullite and quartz phases are of great importance in the microstructure of the ceramic and this fact reveals a possibility for reuse in electrical porcelains. The mullite is an important constituent because it is a phase that makes it possible to increase the mechanical strength in addition to the body allows the use at high temperatures. The use of ceramic bodies residue fuses, proved feasible for application in electrical porcelain and the most significant results were obtained by the formulations with 25% waste and sintering at 1200°C

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are attached to the boundary of the body, low intensity alternating currents are applied, and the resulting electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains the three-dimensional internal admittivity distribution that corresponds to the image. One of the main goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. However, when the finite element method (FEM) is employed and the corresponding mesh is refined to increase resolution and accuracy, the computational cost increases substantially, especially in the estimation of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the forward problem, which was previously reported in the context of structural optimization. We propose several improvements to this solver to increase its performance in the EIT context. The solver is based on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time for a constant and high resolution finite element mesh. In addition, we consider a powerful preconditioner and provide a detailed pseudocode for the improved iterative solver. The numerical results show the effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradient (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low computational cost. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is intended to study the possibility of adding an amount of waste from iron mining in the ceramic mass. Clay and coal, from Vale do Paraiba, Sao Paulo, Brazil, were used in this research. These raw materials are used in the ceramic block manufacture. Clay and waste were analyzed by X-ray fluorescence and X-ray diffraction, particle size, differential thermal and thermogravimetric analysis. Liquid limit and plasticity index tests were performed in order to determine the amount of waste that which should be used in the ceramic mass. After determining the amount of waste, all samples were uniaxially pressed and sintered at 900 degrees C. Surface roughness measurements, apparent porosity and bulk density technique and three-point flexural tests were also performed to characterize the samples. The results showed that by adding the exact amount of waste, which was determined by the essays, it is possible to manufacture solid bricks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Companies involved in kaolin mining and treatment represent an important area of industrial development in Brazil, significantly contribution to the worldwide production of such mineral. As a result, large volumes of kaolin residue are constantly generated and abandoned in the environment, negatively contributing to its preservation. In this scenario, the objective of the present study was to characterize the residue generated from kaolin mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Three compositions were prepared using kaolin residue contents of 10%, 20% and 30%. Samples were uniaxially pressed, fired at 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results showed that the residue basically consisted of kaolinite and successfully replaced raw kaolin in the preparation of ceramic title formulations without significantly affecting the properties of the fired material

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BackgroundEndodontic treatment, involves removal of the dental pulp and its replacement by a root canal filling. Restoration of root filled teeth can be challenging due to structural differences between vital and non-vital root filled teeth. Direct restoration involves placement of a restorative material e.g. amalgam or composite directly into the tooth. Indirect restorations consist of cast metal or ceramic (porcelain) crowns. The choice of restoration depends on the amount of remaining tooth which may influence long term survival and cost. The comparative in service clinical performance of crowns or conventional fillings used to restore root filled teeth is unclear.ObjectivesTo assess the effects of restoration of endodontically treated teeth (with or without post and core) by crowns versus conventional filling materials.Search methodsWe searched the following databases: the Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE via OVID, EMBASE via OVID, CINAHL via EBSCO, LILACS via BIREME and the reference lists of articles as well as ongoing trials registries. There were no restrictions regarding language or date of publication. Date of last search was 13 February 2012.Selection criteriaRandomised controlled trials (RCTs) or quasi-randomised controlled trials in participants with permanent teeth which have undergone endodontic treatment. Single full coverage crowns compared with any type of filling materials for direct restoration, as well as indirect partial restorations (e.g. inlays and onlays). Comparisons considered the type of post and core used (cast or prefabricated post), if any.Data collection and analysisTwo review authors independently assessed trial quality and extracted data.Main resultsOne trial judged to be at high risk of bias due to missing outcome data, was included. 117 participants with a root filled premolar tooth restored with a carbon fibre post, were randomised to either a full coverage metal-ceramic crown or direct adhesive composite restoration. At 3 years there was no reported difference between the non-catastrophic failure rates in both groups. Decementation of the post and marginal gap formation occurred in a small number of teeth.Authors' conclusionsThere is insufficient evidence to support or refute the effectiveness of conventional fillings over crowns for the restoration of root filled teeth. Until more evidence becomes available clinicians should continue to base decisions on how to restore root filled teeth on their own clinical experience, whilst taking into consideration the individual circumstances and preferences of their patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endodontic treatment, involves removal of the dental pulp and its replacement by a root canal filling. Restoration of root filled teeth can be challenging due to structural differences between vital and non-vital root filled teeth. Direct restoration involves placement of a restorative material e.g. amalgam or composite directly into the tooth. Indirect restorations consist of cast metal or ceramic (porcelain) crowns. The choice of restoration depends on the amount of remaining tooth which may influence long term survival and cost. The comparative in service clinical performance of crowns or conventional fillings used to restore root filled teeth is unclear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Endodontic treatment involves removal of the dental pulp and its replacement by a root canal filling. Restoration of root filled teeth can be challenging due to structural differences between vital and non-vital root-filled teeth. Direct restoration involves placement of a restorative material e.g. amalgam or composite, directly into the tooth. Indirect restorations consist of cast metal or ceramic (porcelain) crowns. The choice of restoration depends on the amount of remaining tooth, and may influence durability and cost. The decision to use a post and core in addition to the crown is clinician driven. The comparative clinical performance of crowns or conventional fillings used to restore root-filled teeth is unknown. This review updates the original, which was published in 2012. OBJECTIVES To assess the effects of restoration of endodontically treated teeth (with or without post and core) by crowns versus conventional filling materials. SEARCH METHODS We searched the following databases: the Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE via OVID, EMBASE via OVID, CINAHL via EBSCO, LILACS via BIREME. We also searched the reference lists of articles and ongoing trials registries.There were no restrictions regarding language or date of publication. The search is up-to-date as of 26 March 2015. SELECTION CRITERIA Randomised controlled trials (RCTs) or quasi-randomised controlled trials in participants with permanent teeth that have undergone endodontic treatment. Single full coverage crowns compared with any type of filling materials for direct restoration or indirect partial restorations (e.g. inlays and onlays). Comparisons considered the type of post and core used (cast or prefabricated post), if any. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data from the included trial and assessed its risk of bias. We carried out data analysis using the 'treatment as allocated' patient population, expressing estimates of intervention effect for dichotomous data as risk ratios, with 95% confidence intervals (CI). MAIN RESULTS We included one trial, which was judged to be at high risk of performance, detection and attrition bias. The 117 participants with a root-filled, premolar tooth restored with a carbon fibre post, were randomised to either a full coverage metal-ceramic crown or direct adhesive composite restoration. None experienced a catastrophic failure (i.e. when the restoration cannot be repaired), although only 104 teeth were included in the final, three-year assessment. There was no clear difference between the crown and composite group and the composite only group for non-catastrophic failures of the restoration (1/54 versus 3/53; RR 0.33; 95% CI 0.04 to 3.05) or failures of the post (2/54 versus 1/53; RR 1.96; 95% CI 0.18 to 21.01) at three years. The quality of the evidence for these outcomes is very low. There was no evidence available for any of our secondary outcomes: patient satisfaction and quality of life, incidence or recurrence of caries, periodontal health status, and costs. AUTHORS' CONCLUSIONS There is insufficient evidence to assess the effects of crowns compared to conventional fillings for the restoration of root-filled teeth. Until more evidence becomes available, clinicians should continue to base decisions about how to restore root-filled teeth on their own clinical experience, whilst taking into consideration the individual circumstances and preferences of their patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

De forma a completar as necessidades estéticas, que são cada vez mais exigidas pela sociedade, as cerâmicas dentárias têm apresentado rápida evolução com o intuito de melhorar as suas propriedades físicas e mecânicas, como também óticas. O desenvolvimento de novos materiais permitiu a aplicação e o progresso dos sistemas totalmente cerâmicos utilizados na área da medicina dentária. Pelas suas características estéticas relativamente aos sistemas metalocerâmicos, rapidamente os sistemas totalmente cerâmicos ocuparam o seu lugar no mercado, levando à atenção de médicos dentistas, como dos próprios pacientes. Dentro destes sistemas totalmente cerâmicos, encontra-se a cerâmica reforçada com dissilicato de lítio. Esta revisão narrativa da literatura teve como objetivo descrever as características da cerâmica dissilicato de lítio de forma a tornar possível compreender em que situações clinicas poderá ser utilizada, bem como, de que forma é possível otimizar os processos laboratoriais. Para tal, foram utilizadas várias bases de dados, Pubmed, Scielo, JADA, e Science Direct, utilizando como palavras-chave: “Ceramic, “Dental CeramicPorcelain”, “Lithium Dissilicate”; “IPS e.max

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The expansion and maintenance of electricity distribution networks generates large amounts of waste, much of it in the form of discarded insulators that are not reused or recycled. This paper describes the results of tests on used and new ceramic and polymeric insulators to verify if their exposure to weathering justifies their replacement. In new and used ceramic insulators, properties such as contact angle, relative density, porosimetry, dilatometry and X-ray diffraction patterns showed no differences or the differences that were found could not be related to their use. The discarded ceramic material showed high thermal stability, an interesting characteristic for application as chamotte. It can also be reused to replace gravel used in substations. In polymeric insulators, thermogravimetry, differential scanning calorimetry and relative density test results suggest degradation of used material compared to new. This would justify their replacement and discard as waste, but they show little recycling potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of alumina content on the mechanical strength of electrical porcelain manufactured by green machining of isostatically pressed blanks was examined with a view to attaining optimal mechanical properties at low sintering temperatures. Porcelain compositions were formulated with four different alumina contents, maintaining the same proportion of the other materials (kaolin, clay and feldspar). Test specimens were isostatically pressed at 70 MPa and machined at high speed into cylindrical test specimens using controlled machining parameters. These specimens were sintered at several temperatures to determine the optimal sintering temperature for each composition, after which their mechanical properties were analyzed by the flexural bend test. The results indicated a correlation between the alumina content and the sintering temperature, and between the flexural strength and its influence on the green machining conditions. An average tensile strength of 786 MPa was attained for the composition with an added content of 30 wt% of commercial alumina sintered at 1250 degrees C, pressed and machined under industrial conditions.