995 resultados para Fungal proteins


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genes integrated near the telomeres of budding yeast have a variegated pattern of gene repression that is mediated by the silent information regulatory proteins Sir2p, Sir3p, and Sir4p. Immunolocalization and fluorescence in situ hybridization (FISH) reveal 6-10 perinuclear foci in which silencing proteins and subtelomeric sequences colocalize, suggesting that these are sites of Sir-mediated repression. Telomeres lacking subtelomeric repeat elements and the silent mating locus, HML, also localize to the periphery of the nucleus. Conditions that disrupt telomere proximal repression disrupt the focal staining pattern of Sir proteins, but not necessarily the localization of telomeric DNA. To monitor the telomere-associated pools of heterochromatin-binding proteins (Sir and Rap1 proteins) during mitotic cell division, we have performed immunofluorescence and telomeric FISH on populations of yeast cells synchronously traversing the cell cycle. We observe a partial release of Rap1p from telomeres in late G2/M, although telomeres appear to stay clustered during G2-phase and throughout mitosis. A partial release of Sir3p and Sir4p during mitosis also occurs. This is not observed upon HU arrest, although other types of DNA damage cause a dramatic relocalization of Sir and Rap1 proteins. The observed cell cycle dynamics were confirmed by direct epifluorescence of a GFP-Rap1p fusion. Using live GFP fluorescence we show that the diffuse mitotic distribution of GFP-Rap1p is restored to the interphase pattern of foci in early G1-phase.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dermatophytes are highly specialized filamentous fungi which cause the majority of superficial mycoses in humans and animals. The high secreted proteolytic activity of these microorganisms during growth on proteins is assumed to be linked to their particular ability to exclusively infect keratinized host structures such as the skin stratum corneum, hair, and nails. Individual secreted dermatophyte proteases were recently described and linked with the in vitro digestion of keratin. However, the overall adaptation and transcriptional response of dermatophytes during protein degradation are largely unknown. To address this question, we constructed a cDNA microarray for the human pathogenic dermatophyte Trichophyton rubrum that was based on transcripts of the fungus grown on proteins. Profiles of gene expression during the growth of T. rubrum on soy and keratin protein displayed the activation of a large set of genes that encode secreted endo- and exoproteases. In addition, other specifically induced factors potentially implicated in protein utilization were identified, including heat shock proteins, transporters, metabolic enzymes, transcription factors, and hypothetical proteins with unknown functions. Of particular interest is the strong upregulation of key enzymes of the glyoxylate cycle in T. rubrum during growth on soy and keratin, namely, isocitrate lyase and malate synthase. This broad-scale transcriptional analysis of dermatophytes during growth on proteins reveals new putative pathogenicity-related host adaptation mechanisms of these human pathogenic fungi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trichophyton rubrum is the most common etiological agent of human dermatophytosis. Despite the incidence and medical importance of this dermatophyte, little is known about the mechanisms of host invasion and pathogenicity. Host invasion depends on the adaptive cellular responses of the pathogen that allow it to penetrate the skin layers, which are mainly composed of proteins and lipids. In this study, we used suppression subtractive hybridization to identify transcripts over-expressed in T rubrum cultured in lipid as carbon source. Among the subtractive cDNA clones isolated, 85 clones were positively screened by cDNA array dot blotting and were sequenced. The putative proteins encoded by the isolated transcripts showed similarities to fungal proteins involved in metabolism, signaling, defense, and virulence, such as the MDR/ABC transporter, glucan 1,3-beta-glucosidase, chitin synthase B, copper-sulfate-regulated protein, and serine/threonine phosphatase (calcineurin A). These results provide the first molecular insight into the genes differentially expressed during the adaptation of T. rubrum to a lipidic carbon source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the nucleotide sequence of a 17,893 bp DNA segment from the right arm of Saccharomyces cerevisiae chromosome VII. This fragment begins at 482 kb from the centromere. The sequence includes the BRF1 gene, encoding TFIIIB70, the 5' portion of the GCN5 gene, an open reading frame (ORF) previously identified as ORF MGA1, whose translation product shows similarity to heat-shock transcription factors and five new ORFs. Among these, YGR250 encodes a polypeptide that harbours a domain present in several polyA binding proteins. YGR245 is similar to a putative Schizosaccharomyces pombe gene, YGR248 shows significant similarity with three ORFs of S. cerevisiae situated on different chromosomes, while the remaining two ORFs, YGR247 and YGR251, do not show significant similarity to sequences present in databases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, TBF1, an essential gene, influences telomere function but also has other roles in the global regulation of transcription. We have identified a new member of the tbf1 gene family in the mammalian pathogen Pneumocystis carinii. We demonstrate by transspecies complementation that its ectopic expression can provide the essential functions of Schizosaccharomyces pombe tbf1 but that there is no rescue between fission and budding yeast orthologues. Our findings indicate that an essential function of this family of proteins has diverged in the budding and fission yeasts and suggest that effects on telomere length or structure are not the primary cause of inviability in S. pombe tbf1 null strains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have used the cellular slime mold, Dictyostelium discoideum (Dd), to express the Plasmodium falciparum circumsporozoite protein (CS), a potential component of a subunit vaccine against malaria. This was accomplished via an expression vector based on the discoidin I-encoding gene promoter, in which we linked a sequence coding for a Dd leader peptide to the almost complete CS coding region (pEDII-CS). CS production at both the mRNA and protein levels is induced by starving cells in a simple phosphate buffer. Variation in pH or cell density does not seem to influence CS synthesis. CS-producing cells can be grown either on their normal substrate, bacteria, or on a semi-synthetic media, without affecting CS accumulation level. The CS produced in Dd seems similar to the natural parasite protein as judged by its size and epitope recognition by a panel of monoclonal antibodies. We constructed a second expression vector in which the CS is under the control of a Dd ras promoter. CS accumulation can then be induced by external addition of cAMP. Such a tightly regulated promoter may allow expression of proteins potentially toxic to the cell. Thus, Dd could be a useful eukaryotic system to produce recombinant proteins, in particular from human or animal parasites like P. falciparum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The peroxisome targeting signal (PTS) required for import of the rat acyl-CoA oxidase (AOX; EC 1.3.3.6) and the Candida tropicalis multifunctional protein (MFP) in plant peroxisomes was assessed in transgenic Arabidopsis thaliana (L.) Heynh. The native rat AOX accumulated in peroxisomes in A. thaliana cotyledons and targeting was dependent on the presence of the C-terminal tripeptide S-K-L. In contrast, the native C. tropicalis MFP, containing the consensus PTS sequence A-K-I was not targeted to plant peroxisomes. Modification of the carboxy terminus to the S-K-L tripeptide also failed to deliver the MFP to peroxisomes while addition of the last 34 amino acids of the Brassica napus isocitrate lyase, containing the terminal tripeptide S-R-M, enabled import of the fusion protein into peroxisomes. These results underline the influence of the amino acids adjacent to the terminal tripeptide of the C. tropicalis MFP on peroxisomal targeting, even in the context of a protein having a consensus PTS sequence S-K-L.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the fission yeast Schizosaccharomyces pombe, septum formation and cytokinesis are dependent upon the initiation, though not the completion of mitosis. A number of cell cycle mutants which show phenotypes consistent with a defect in the regulation of septum formation have been isolated. A mutation in the S. pombe cdc16 gene leads to the formation of multiple septa without cytokinesis, suggesting that the normal mechanisms that limit the cell to the formation of a single septum in each cycle do not operate. Mutations in the S. pombe early septation mutants cdc7, cdc11, cdc14 and cdc15 lead to the formation of elongated, multinucleate cells, as a result of S phase and mitosis continuing in the absence of cytokinesis. This suggests that in these cells, the normal mechanisms which initiate cytokinesis are defective and that they are unable to respond to this by preventing further nuclear cycles. Genetic analysis has implied that the products of some of these genes may interact with that of the cdc16 gene. To understand how the processes of septation and cytokinesis are regulated and coordinated with mitosis we are studying the early septation mutants and cdc16. In this paper, we present the cloning and analysis of the cdc16 gene. Deletion of the gene shows that it is essential for cell proliferation: spores lacking a functional cdc16 gene germinate, complete mitosis and form multiple septa without undergoing cell cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mycorrhizal symbioses--the union of roots and soil fungi--are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains approximately 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cdc10 gene of the fission yeast Schizosaccharomyces pombe is required for traverse of start and commitment to the mitotic cell division cycle rather than other fates. The product of the gene, p85cdc10, is a component of a factor that is thought to be involved in regulating the transcription of genes that are required for DNA synthesis. In order to define regions of the p85cdc10 protein that are important for its function a fine structure genetic map of the cdc10 gene was derived and the sequences of 13 cdc10ts mutants determined. The 13 mutants tested define eight alleles. Eleven of the mutants are located in the region that contains the two copies of the cdc10/SWI6 repeat motif, implicating it as important for p85cdc10 function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chromatin insulators are defined as transcriptionally neutral elements that prevent negative or positive influence from extending across chromatin to a promoter. Here we show that yeast subtelomeric anti-silencing regions behave as boundaries to telomere-driven silencing and also allow discontinuous propagation of silent chromatin. These two facets of insulator activity, boundary and silencing discontinuity, can be recapitulated by tethering various transcription activation domains to tandem sites on DNA. Importantly, we show that these insulator activities do not involve direct transcriptional activation of the reporter promoter. These findings predict that certain promoters behave as insulators and partition genomes in functionally independent domains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans. A C. albicans gene library was screened in a S. cerevisiae mutant lacking PDR1 and PDR3 and clones resistant to azole antifungals were isolated. From these clones, three genes responsible for azole resistance were identified. These genes (CTA4, ASG1 and CTF1) encode proteins with Zn(2)-Cys(6)-type zinc finger motifs in their N-terminal domains. The C. albicans genes expressed in S. cerevisiae could activate the transcription of a PDR5-lacZ reporter system and this reporter activity was PDRE-dependent. They could also confer resistance to azoles in a S. cerevisiae strain lacking PDR1, PDR3 and PDR5, suggesting that CTA4-, ASG1- and CTF1-dependent azole resistance can be caused by genes other than PDR5 in S. cerevisiae. Deletion of CTA4, ASG1 and CTF1 in C. albicans had no effect on fluconazole susceptibility and did not alter the expression of the ABC-transporter genes CDR1 and CDR2 or the major facilitator gene MDR1, which encode multidrug transporters known as mediators of azole resistance in C. albicans. However, additional phenotypic screening tests on the C. albicans mutants revealed that the presence of ASG1 was necessary to sustain growth on non-fermentative carbon sources (sodium acetate, acetic acid, ethanol). In conclusion, C. albicans possesses functional homologues of the S. cerevisiae Pdr1p and Pdr3p transcription factors; however, their properties in C. albicans have been rewired to other functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cells normally grow to a certain size before they enter mitosis and divide. Entry into mitosis depends on the activity of Cdk1, which is inhibited by the Wee1 kinase and activated by the Cdc25 phosphatase. However, how cells sense their size for mitotic commitment remains unknown. Here we show that an intracellular gradient of the dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) Pom1, which emanates from the ends of rod-shaped Schizosaccharomyces pombe cells, serves to measure cell length and control mitotic entry. Pom1 provides positional information both for polarized growth and to inhibit cell division at cell ends. We discovered that Pom1 is also a dose-dependent G2-M inhibitor. Genetic analyses indicate that Pom1 negatively regulates Cdr1 and Cdr2, two previously described Wee1 inhibitors of the SAD kinase family. This inhibition may be direct, because in vivo and in vitro evidence suggest that Pom1 phosphorylates Cdr2. Whereas Cdr1 and Cdr2 localize to a medial cortical region, Pom1 forms concentration gradients from cell tips that overlap with Cdr1 and Cdr2 in short cells, but not in long cells. Disturbing these Pom1 gradients leads to Cdr2 phosphorylation and imposes a G2 delay. In short cells, Pom1 prevents precocious M-phase entry, suggesting that the higher medial Pom1 levels inhibit Cdr2 and promote a G2 delay. Thus, gradients of Pom1 from cell ends provide a measure of cell length to regulate M-phase entry.