946 resultados para Fundamentals in linear algebra
Resumo:
Linear Algebra—Selected Problems is a unique book for senior undergraduate and graduate students to fast review basic materials in Linear Algebra. Vector spaces are presented first, and linear transformations are reviewed secondly. Matrices and Linear systems are presented. Determinants and Basic geometry are presented in the last two chapters. The solutions for proposed excises are listed for readers to references.
Resumo:
This paper analyzes the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is defined as an indicator of the generic ompetence: Use of Technology. Additionally, we show that using CAS could help to enhance the following generic competences: Self Learning, Planning and Organization, Communication and Writing, Mathematical and Technical Writing, Information Management and Critical Thinking.
Resumo:
This work describes an experience with a methodology for learning based on competences in Linear Algebra for engineering students. The experience has been based in autonomous team work of students. DERIVE tutorials for Linear Algebra topics are provided to the students. They have to work with the tutorials as their homework. After, worksheets with exercises have been prepared to be solved by the students organized in teams, using DERIVE function previously defined in the tutorials. The students send to the instructor the solution of the proposed exercises and they fill a survey with their impressions about the following items: ease of use of the files, usefulness of the tutorials for understanding the mathematical topics and the time spent in the experience. As a final work, we have designed an activity directed to the interested students. They have to prepare a project, related with a real problem in Science and Engineering. The students are free to choose the topic and to develop it but they have to use DERIVE in the solution. Obviously they are guided by the instructor. Some examples of activities related with Orthogonal Transformations will be presented.
Resumo:
Inspired by the relational algebra of data processing, this paper addresses the foundations of data analytical processing from a linear algebra perspective. The paper investigates, in particular, how aggregation operations such as cross tabulations and data cubes essential to quantitative analysis of data can be expressed solely in terms of matrix multiplication, transposition and the Khatri–Rao variant of the Kronecker product. The approach offers a basis for deriving an algebraic theory of data consolidation, handling the quantitative as well as qualitative sides of data science in a natural, elegant and typed way. It also shows potential for parallel analytical processing, as the parallelization theory of such matrix operations is well acknowledged.
Resumo:
Lecture slides and notes for a PhD level course on linear algebra for electrical engineers and computer scientists. This course is given in in the framework of the School of Electronics and Computer Science Mathematics Training Courses https://secure.ecs.soton.ac.uk/notes/pg_maths/ (ECS password required)
Resumo:
In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.
Resumo:
Eigenvalue assignment methods are used widely in the design of control and state-estimation systems. The corresponding eigenvectors can be selected to ensure robustness. For specific applications, eigenstructure assignment can also be applied to achieve more general performance criteria. In this paper a new output feedback design approach using robust eigenstructure assignment to achieve prescribed mode input and output coupling is described. A minimisation technique is developed to improve both the mode coupling and the robustness of the system, whilst allowing the precision of the eigenvalue placement to be relaxed. An application to the design of an automatic flight control system is demonstrated.
Resumo:
v. 1. Basic concepts.--v. 2. Linear algebra.--v. 3. Theory of fields and Galois theory.
Resumo:
In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.